Another Interesting Result for the Number *e*

Adam Schwartz

There's a math teaser that asks: which is bigger e^{π} or π^{e} ?

The answer is not immediately obvious but one might arrive at the correct answer by the following reasoning. If I have a number x^{y} with x and y real, positive numbers then, generally speaking, x^{y} increases faster as y increases than if x increases. Therefore, it would seem that because $\pi > e$ that e^{π} is greater than π^{e} . This, in fact, is the correct result as a simple calculation will verify.

Looking at this teaser one might go one step further and ask if there is any $\Delta > 0$ such that $e^{e^{+\Delta}} \leq (e^{+\Delta})^{e}$?

Well, the answer is no! This provides further evidence that the reasoning above is sound. But is the reasoning correct?

Let's take the question one step further. Consider the relationship

(1)
$$x^{(x+\Delta)} \leq (x+\Delta)^x$$

where x > 1 and $\Delta > 0$ are real numbers. For a given x are there any values of $\Delta > 0$ such that relationship (1) holds? As discussed above, the answer is no at least if x=e.

Here's the complete answer:

- For l < x < e, there exists Δ_x such that relationship (1) holds if and only if $0 < \Delta < \Delta_x$.
- For x=e only $\Delta=0$ satisfies relationship (1).
- If we allow $\Delta < 0$ then for x > e, there exists $\Delta_x < x$ such that relationship (1) holds if and only if $-\Delta_x < \Delta < 0$.

An interesting aside: if x=2 then $\Delta_x = x$. In fact, for $2 \le x \le e$, $\Delta_x \le x$ while for $0 \le x \le 2$, $\Delta_x \ge x$.

<u>Proof for the case x=e</u>

Let us show that $e^{e+\Delta} > (e+\Delta)^e$ for all $\Delta > 0$ by taking the log of both sides (noting that the log is positive) and expanding the right hand side in a Taylor series around *e*.

$$(e+\Delta) \ln e > e \ln(e+\Delta) = e [1 + (\Delta/e) - \frac{1}{2} (\Delta/e)^{2} + \frac{1}{3} (\Delta/e)^{3} - ...] = e+\Delta - \frac{\Delta^{2}}{e} [\frac{1}{2} - \frac{1}{3} (\Delta/e) + ...]$$

Since $\ln e = 1$, we can subtract $e + \Delta$ from both sides and see that this relationship implies that $0 > -\Delta^2/e \left[\frac{1}{2} - \frac{1}{3}(\Delta/e) + ...\right]$ which is clearly true since, as $\Delta \rightarrow 0$ the term in the bracket approaches $\frac{1}{2}$.