R ecursive

(I) g:ﬁg;?t'on A M atlab Toolbox for Solving
T rajectory Optimal Contr ol Problems
S olver

95

Version 1.0 or Windows
May 1997

by

A. Schwartz, E. Pblak and Y. Chen

Optimal Trajectory Optimal Control

16

Time Time

Conditions f or Use of RIOTS 95™

To use an part of the RIO'S_95 toolbox the user must agree to the ¥ahg conditions:

1.

TheRIOTS_95 toolbox for solving optimal control problem is digitéd for sale according to the
RIOTS_95 license agreementtse of RIO'S_95 is limited to those usersveced under the pur
chase agreement.

Thissoftware is distrilnted without ap performance or accurgguarantees. lis solely the repon-
sibility of the user to determine the accyrand validity of the results obtained using RIS.

RIOTS_95, the RI®S_95 uses manual, or ay portion of either may not be distubed to third
parties. Interesteplarties must obtain RITC5_95 directly from Adam Schawtz or his associates.

Any modifications to the programs in RTS_95 must be communicated to Adam Saftzv Modi-
fied programs will remain the sole property of Adam Sattzv

Dueacknavledgment must be made of the use of RBO95 in ag resarch reports or publications.
Wheneer such reports are released for public access, & shpuld be forvarded to Adam
Schvartz.

RIOTS_95, or ay portion of the softwre in RIOS_95, cannot be used as part of ather soft-
ware without the gplicit consent of Adam Schavtz.

RIOTS_95 has been thoroughly dejged and there are no memory leaks or memory errors in the
code. Haovever, it is possible for the uses’mde to create a memory error througlulfy use of
pointers or incorrectly allocated memory arrays.

RIOTS_95™: A Matlab Toolbox for Solving Optimal Control Problems, \érsion 1.0

Copyright © 1997-1998 by Adam L. Sclatz
All Rights Resered.

NPSOL § is copright by Stanford Uniersity, CA.

Enquiries should be directed to:

Dr. Adam L. Schwartz

333 Quinterra Ln.

Danville, CA 94526

USA

E-mail: adams@eedwerkeley.edu
Phone : 510-837-8248

A self-extracting RIO'S_95 educational/demonstration kit isigable from the folloving web sites:
http://www.accessan.com/ adam/RIDS
http://www.shuya.home.ml.org/RIOTS5
http://lwww.crosswinds.net/singapore/"yqgchen/riotslht
http://www.cadcam.nus.sg/ elecyq
http://www.ee.nus.sg/"yangquan/riots.html

Abstract

RIOTS_95: A Matlab Toolbox for Solving Optimal Control Problems

by
A. L. Stwartz and EPolak

This manual describes the use and operation oTRIO5. RIGS_95 is a group of programs and
utilities, written mostly in C and designed as a toolbox for Matlab, thaide® an interacte environ-
ment for solving a ery broad class of optimal control probleniRIOTS 95 comes pre-compiled for use
with the Windows3.1, Wndows95 or WhdowsNT operating systems.

The numerical methods used by RI® 95 are supported by the theonjlil] which uses the
approach of consistent approximations as defined by Pxjlakn this approach, a solution is obtained as
an accumulation point of the solutions to a sequence of discrete-time optimal control problems that are, in
a ecific sense, consistent approximations to the original continuous-time, optimal control probhem.
discrete-time optimal control problems are constructed by discretizing the system dynamics with one of

four fixed step-size Rungetita intgration methods and by representing the controls as finite-
dimensional B-splinesThe intgration proceeds on a (possibly non-uniform) mesh that specifies the
spline breakpointsThe solution obtained for one such discretized problem can be used to select a ne
integration mesh upon which the optimal control problem can be re-discretized to producdiscrete-

time problem that more accurately approximates the original probllemractice, only a f& such re-
discretizations need to be performed to achim acceptable solution.

RIOTS_95 preides three dferent programs that perform the discretization andestig finite-
dimensional discrete-time problerithe appropriate choice of optimization program depends on the type
of problem being sobkd as well as the number of points in thegraion mesh.In addition to these opti-
mization programs, RITS_95 also includes other utility programs that are used to refine the discretiza-
tion mesh, to compute estimates of grtion errors, to compute estimates for the error between the
numerically obtained solution and the optimal control and to deal with oscillations that arise in the numer
ical solution of singular optimal control problems.

'RIOTS_95 also includes awiable step-size ingeation routine and a discrete-time salv

Table of Contents

Section 1. Purpose 1

Section 2: Problem Description 3
Transcription for Free Finalifie Problems.............uuuiiiiiiiiiiiiiiiiiiieiieeeveeseeeeseeseeseeeeeeeeeeeeeeeeees 4
QI = V[T o] VA @0 1= = 1T 1 PSPPSR 5
ContinUUM ODJECUE FUNCHIONSeiiiiiiiiiiiiiii ettt e e e e e e s 5

Section 3. Using RIOTS 95 6
Y= 151 (o o PP 8
ST =TT 0] o TP PPPPPRRTP 11
TS5 (o o PP 13
Y= 1SS (o 1 PP 15

Section 4: User Supplied Subputines 18
ACHVALE SYS_ACHVALEcoi i it ennrnnne 20
L1 AT | | PP PO P PP PPPPRP PP 21
D, SYS N 23
S £ 24
0 I3 £ T o PP PPPRRT 26
Dh, sys Dh; DJsys DI; DG SYS DQ...ccovvviiiiiiiiiiiee e 28
[0 1= o USSP 30
L] AL 1 o PO P T PPPPPTPPPPPRIN 31

Section 5: Simulation Routines 33
SIMUIALE....ceeeeeeeee e 34
Implementation of the Intgation ROULINES...........ccoooiiiiii i 41

SYSIEM SIMUIALION.o e e e e e e e e e ee e e eeeeees 41
Gradient ERIUALIONcoooiiiiiiiieeiieiceeeee e 41

(o3 7= Ta L o L= 1 1RSSR 46
(o3 07 To Qo > Vo 48
(23 = | | o 50

Section 6: Optimization Programs 52
Choice of Intgration and SPliNe OFders..........ccoiioiiii e eeeeeeeeeeeeees 52
Coordinate Tansformationcoooiiiiiiii i B5
Description of the Optimization ProgramS............ueeivieieeeeieiiieiieereeeeeeeeeeeeeee e eeeee e eeeeeeeeeeeeees 58
= L0 o F= o | o 59
(011 | (=] TSP TTP PP 61
01 L3 21T PP 63
110} £ TR 67

Section 7: Utility Routines

72

(o] o110 =T 1 (o]

[0 1S3 1 o) = PP

LS =] £ 0] £ TP OO PPPPPRRR

LS o][)

L1 0= 1 153 {0 o P

Section 8: Installing, Compiling and Linking RIO TS_95 80
Compiling the UseSupplied SyStem COUE..........ccuiiiiiiiiieiiiiieee e

The M-l INTEIRCE ..o 81

Section 9: Planned Future Improvements 82

Appendix: ExampleProblems 85

REFERENCES

80

73
74
76
78
19

1. PURPOSE

This chapter describes the implementation of a Matiadibox called RIFS_95 for solving opti-

mal control problemsThe name RIDS stands forRecursie® Integration Optimal Tajectory Soler”
This name highlights theatt that the functionalues and gradients needed to find the optimal solutions
are computed by forard and backard inteyration of certain dférential equations.

RIOTS_95 is a collection of programs that are callable from the mathematical simulation program

Matlah Most of these programs are written in either C (ancetinknto Matlab using Matlap’MEX
facility) or Matlab’s M-script language All of Matlab’s functionality including command linexecution
and data entry and data plotting, aveilable to the userThe following is a list of some of the main fea-
tures of RIO'S_95.

Solves a ery lage class of finite-time optimal controls problems that includes: trajectory and end-
point constraints, control boundsriable initial conditions (free final time problems), and problems
with integral and/or endpoint cost functions.

System functions can be supplied by the user as either object code or M-files.

System dynamics can be igmated with fied step-size Rungetkta intgration, a discrete-time
solver or a ariable step-size method'he softvare automatically computes gradients for all func-
tions with respect to the controls andydnee initial conditions. These gradients are computed
exactly for the fixed step-size routines.

The controls are represented as splinglis allawvs for a high dgree of function approximation
accurayg without requiring a lage number of control parameters.

The optimization routines use a coordinate transformation that creates an orthonormal basis for the
spline subspace of control§he use of an orthogonal basis can results in a significant reduction in
the number of iterations required to sk poblem and an increase in the solution acgurdicalso

malkes the termination tests independent of the discretizatieh le

There are three main optimization routines, each suited fiereatit levels of generality of the opti-

mal control problem.The most general is based on sequential quadratic programming metheds.
most restrictre, but most eficient for lage discretization ke&ls, is based on the projected descent
method. Athird algorithm uses the projected descent method in conjunction with an augmented
Lagrangian formulation.

There are programs that pide estimates of the irgeation error for the fied step-size Rungetitta
methods and estimates of the error of the numerically obtained optimal control.

The main optimization routine includes a special feature for dealing with singular optimal control
problems.

The algorithms are all founded on rigorousvagence theory
In addition to being able to accurately anticegntly solve a broad class of optimal control prob-

lems, RIOS_95 is designed in a moduyléwolbox fashion that allws the user tox@eriment with the
optimal control algorithms and constructwnelgorithms. The programsouter and aug_lagmg,

2Matlab is a rgistered trademark of Mattosks, Inc. Matlab \ersion 4.2c with the Spline toolbox is required.

Slterative is more accuratedd would not lead to a nice acrgm.

Section 1: Pupose 1

described lateare examples of this toolbox approach to constructing algorithms.

RIOTS_95 is a collection of geral different programs (including a program which is, itself, called
riots) that fall into roughly three cagmries: intgration/simulation routines, optimization routines, and
utility programs. Of these programs, the onesitable to the user are listed in the folimg table,

Simulation Routines Optimization Routines Utility Programs
simulate riots control_error
check_derv pdmin distrib ute
check_grad aug_lagng est_eror
evd_fnc outer make_spline
transform

Several of the programs in RIC5_95 require functions that areadable in the Matlab Spline toolboxn

addition to these programs, the user must also supply a set of routines that describe the optimal control
problem which must be sad. Seeral example optimal control problems come supplied with
RIOTS_95. Finally there is a Matlab script callé’IOTS_demowhich proasides a demonstration of

some of the main features of RIS _95. D use the demonstration, perform the fallng steps:

Step 1: Fdlow the directions in 88 on compiling and linking RI® 95. Also,compile the sample
systems rayleigh.c, bang.c and goddard.c that come supplied willSR95.

Step 2: Start Matlab from within the ‘RIDS/systems’ directory
Step 3: Add the RIO'S_95 directory to Matlab’path by typing at the Matlab prompt,

>> path(path,’ full_path_name_for_RITS)
>> RIOTS_demo

Limitations. This is the first ®rsion of RIO'S_95. Asit stands, there are awWesignificant limitations
on the type of problems which can be sohby RIO'S_95:

1. Problemswith inequality state constraints that requireesyvhigh level of discretization cannot be
solved by RIO'S_95. Alsothe computation of gradients for trajectory constraints is not handled as
efficiently as it could be.

2. Problemghat hae hghly unstable, nonlinear dynamics may requiregy\good initial guess for the
solution in order to be sadd by RIO'S_95.

3. Generalconstraints on the controls that do notolne date \ariables are not handledfiefently:
adjoints are computedibnot used.

4. RIOTS_95 does not alw delays in the systems dynamics (althougtddapproximations can be
used).

5. Numericalmethods for solving optimal control problems/daot reached the stage that, sangth-
ods for solving dferential equations la reached. Solvingan optimal control problem can,
depending on the di€ulty of the problem, require significant usevalvement in the solution pro-
cess. Thissometimes requires the user to understand the theory of optimal control, optimization
and/or numerical approximation methods.

Section 1: Pupose 2

Conventions. This manual assumesiliarity with Matlab The following corventions are used
throughout this manual.

* Program names and computer commands are indicatsaldrtypeface.
e Userinput is indicated iG@ourier typeface.

e Optional program @yuments are listed in bragts. Thedefault value for ag optional agument can
be specified usinf .

e Optional program ayjuments at the end of argament list can be omitted in which case thege-ar
ments tak on their defult values.

» Typing a functiors rame without aguments shas the calling syntax for that functiotdelp can be
obtained for M-file programs by typirfgelp followed by the function name at Matlalgrompt.
Typinghelp RIOTS produces a list of the programs in RI® 95.

» The machine precision is denoteddyich

2. PROBLEM DESCRIPTION

RIOTS_95 is designed to s@\ptimal control problems of the fofin

0 A .
ocp é{p,,]"g'mfp;%,]ewmf(u 1£) = go(¢, x(b)) + J’ lo(t, x, u)dt } 0

subject to: x = h(t,x,u), x(a)= &, t[a,b],
ul)y sult) suladt), j=1,...m, tmab],
gl <l i=1,...n,
I%(t, x(t), u(t)) <O, v ay , o [a,b],
Jei(€, x(0)) <0, vl gg; ,

Oeel&, X(0)) = 0, v Qee

wherex(t)[R", ut)[R™, g:R"xR" - R, RxR"xR™ 5 R, h:RxR"xR™ - R"and we
have wsed the notation = {1,...,q} and LJ[a,b] is the space of Lebesgue measurable, essentially
bounded functionsa, b] — IR™. The functions inOCP can also depend upon parameters which are
passed from Matlab akecution time usinget_flags(described in 84).

The subscript®, ti, ei, and eeon the functiongy(L) and I (LILI)] stand for respectiely, “objective
function’, *‘trajectory constraint, ‘‘endpoint inequality constraintand “endpoint equality constraint’
The subscripts fog(L)l) and | (L)) are omitted when all functions are being considered with@adeo

“Not all of the optimization routines in RT&_95 can handle the full generality of probl&@@P.

Section 1: Pupose 3

the subscript.The functions in the description of problédCP, and the deratives of these functiory
must be supplied by the user as either object code or as M¥ikesbounds on the components£aind
u are specified on the Matlab command line at run-time.

The optimal control probler®CP allows optimization wer both the controu and one or more of
the initial stateg. To be concise, we will define theaviable
n=(u &M Hy = Lg[a bl xR".
With this notation, we can write, for@mple, f () instead off (£, u). We define the inner product dd,
as
(m1,m2)n, = (Ug, Up) 4 (&1, &) .

The norm corresponding to this inner product \@giby |7, = (7, n)lH’f. Note thatH, is a pre-Hilbert
space.

Transcription f or Free Final Time Pr oblems.

ProblemOCP is a fixed final time optimal control problenHowever, free final time problems are easily
incorporated into the form ddCP by augmenting the system dynamics witlo tadditional states (one
additional state for autonomous problemshe idea is to specify a nominal time int&r\a, b], for the
problem and to use a scadfor adjustable by the optimization procedure, to scale the system dynamics
and hence, in &ct, scale the duration of the time intgrvThisscale &ctor and the scaled time, are rep-
resented by thex&ra states.Then RIS 95 can minimizewer the initial value of the etra states to
adjust the scalingFor example, the free final time optimal control problem

a+T
min 9T, y(M) + [T(t.y.u)k

subject toy = H(t,y, u,y@=2¢,t[aa+T],
can, with an augmented statector x = (y, "%, x"), be comerted into the equalent fixed final time
optimal control problem

b
Tgip g(&, x(b)) +-!’I(t, X, u)dt

B(”H(x”‘l, y, u)d < 0
subject tox = h(t, x, u) tg X" E x(@) = &= an, tm[a b],
o O 0 [0

wherey is the firstn —2 components ofx, g(¢, x(b)) = S(a+T¢f”, y(b)), I(t, x,u) i?(x”‘l,y, u) and

b =a+T. Endpoint and trajectory constraints can be handled in the sayeTle quantityT = b-a

is the nominal trajectory durationin this transcriptionx™™* plays the role of time angl is theduration
scale factoy so named becaus€&&" is the efective duration of the trajectories for the scaled dynamics.
Thus, for ag t[a,b], x"(t) = &", x"(t) = a + (t —a)é" and the solutiont;, for the final time is

%If the user does not supply dedives, the problem can still be sel¥ usingiots with finite-difference computation of the gradients.

Section 2: Poblem Description 4

t; = x"Y(b) = a + (b-a)£". Thus, the optimal duration® =t; -a=(b-a)"=T&". Ifa=0and
b =1, thent; = T = £". The main disadantage to this transcription is that it gerts linear systems
into nonlinear systems.

For autonomous systems, th&tea variable x"1 is not neededNote that, it is possible ven for
non-autonomous systems, to transcribe minimum time problems into the fa@Rusing only one
extra state griable. Havever, this would require functions ligh(t, x, u) = h (tx", y, u). SinceRIOTS_95
does not gpect the user to supply degiives with respect to thé argument it can not properly compute
derivatives for such functions.Hence, in the current implementation of H® 95, the ®ra \ariable
x"is needed when transcribing non-autonomous, free final time problems.

Trajectory constraints.

The definition of problenOCP allows trajectory constraints of the forp(t, x,u) <0 to be handled

directly. Howeve, constraints of this form are quiteitlensome computationallyrhis is mainly due to

the fact that a separate gradient calculation must be performed for each point at which the trajectory con-
straint is galuated.

At the expense of increased constraint violation, reduced solution agcamdcan increase in the
number of iterations required to obtain solutions, trajectory constraints can \Eet@drinto endpoint
constraints which are computationally much easier to hafddies is accomplished as folls. Thesys-
tem is augmented with amtea state ariablex™! with

x™H(t) = gmax{0,l(t, x(t),ut))}?, x™a)=0,

wherey > 0is a positve alar The right-hand side is squared so that it ifedgntiable with respect to
andu. Then it is clear that either of the endpoint constraints

Qei(£, X(0)) =x™H(D) O or Qedd, X(D) = x"H(b) = 0

is satisfied if and only if the original trajectory constraint is satisflacdpractice, the accurgdo which

OCP can be soled with these endpoint constraints is quite limited because these endpoint constraints do
not satisfy the standard constraint qualification (described in theT®4#.difficulty can be circumented

by eliminating the constraints altogether and, instead, adding to the abjieiciction the penalty term

Jo(&, x(b)) = x"™1(b) where nav u senes as a penalty parametétoweva, in this approachy must nov

be a lage positve rumber and this will adsrsely affect the conditioning of the problenktach of these
possibilities is implemented in ‘obstacle.c’ for problem Obstacle (see Appendix B).

Contin uum Objective Functions and Minimax Pr oblems.
Objective functions of the form

min max I(t, x(t), u(t
in, max 1(t, x(1), u(t)

can be coverted into the form used in proble®CP by augmenting the stateetor with an additional
state,w, such that

W=0; w(0)=¢m

and forming the equalent trajectory constrained problem

Section 2: Poblem Description 5

min &Mt
(u,gm)
subject to
I(t, x(t),u(t)) - ™ <0, t[a,b].

A similar transcription wrks for standard min-max objeati functions of the form
b
H v + v
mulnvrg]]aqu (u, &) J'a 1V (t, x(t), u(t)dt .

In this case, an equalent endpoint constrained problem with a single objedtinction,

mln §n+l
u’§n+1

subject to

g"(u,¢)-¢m <0, vl g,
is formed by using the augmented statetor (x, w, z) with

Ww=0, w()= "

2V = 1"(t, x(t),ut)), 2/(0)=0, v[Oq,,
and defining

¢V (U, &) =g'(u,&) + Z'(b) .

3. USING RIOTS_95

This section preides somexamples of har to mulate systems and selgptimal control problems with
the RIOI'S_95 toolbox. Detailed descriptions of all required udenctions, simulation routines, opti-
mization programs and utility programs areepiin subsequent sectionshese programs are all callable
from within Matlab once Matlab’path is set to include the directory containing RBD95. TheMatlab
command

>> path(path,’ full_path_name_for_RITS)
>> RIOTS_demo

should be used for this purposBefer to the 88,'Compiling and Linking RIQ'S_95’, for details on
how to install RIOTS _95.

RIOTS_95 preides approximate solutions of continuous time optimal control problems by solving
discretized ‘approximating” problems. Thesapproximating problems are obtained (dynumerically
integrating the continuous time system dynamics with one of four Runtfe-kteration methodsand
(i) restricting the space of all@ble controls to finite-dimensional subspaces of splimeghis way, the
approximating problems can by setl’using standard mathematical programming techniques to optimize
ove the spline codicients and ayfree intial conditions.It is not important for the user of RT&_95 to

SRIOTS_95 also includes a discrete-time systemesaind a ariable step-size inggation routine.

Section 2: Poblem Description 6

understand the discretization procedure or splines.
The accuragof the solutions obtained in this manner depends waraldactors which include:

(1) Theaccurag of the intgration scheme (which depends on the order of thgratien scheme
and the selection of the iggeation mesh).

(2) How well elements of the spline subspace can approximate solutions of the original, infinite-
dimensional problem (this depends on the order and knot sequence of the splines and on the smoothness
of the optimal control).

3) How accurately the approximating problems are sdlby the underlying mathematical program-
ming algorithm.

The allavable spline orders are related to the particulamgiatiton method used (see description of
simulate in 85). For problems that ha& snooth optimal controls, higher order splines will\ade solu-
tions with higher accurgc Smoothness is not, k@ver, typical of optimal controls for problems with
control and/or trajectory constraints1 general, the spline knot sequence is constructed from tlygante
tion mesh

tn = { 1T
which also specifies the spline breakpointéie subscripiN, referred to as the discretizatiorvég indi-
cates that there amé integration steps andtll + 1 spline breakpoints Each spline is determined from the
knot sequence and its ctiefents. or a spline of ordep, each control input required + p — 1 coeffi-
cients and these cdigfents are stored asw vectors. Thusa ystem withm inputs will be stored in a
“ short-fat” matrix with m rows andN + p — 1 columns. Moredetails about splines arevgn in the next
section.

Typically, we use the Matlab ariableu to store the spline cdefients. Thesystem trajectories
computed by intgrating the system dynamics are stored in théablex. Like u, x is a ‘short-fat”
matrix with n rows andN +1 columns. Thusfor example,x(:,k) is the computed alue of x(t).
Other quantities, such as gradients and adjoints, are also stomdwesfat” matrices.

The folloving sample sessions with RTS_95 sole a ew d the sample optimal control problems
that are supplied with R5_95 asxamples. AppendiB provides a description of these problems and
the C-code implementations are included in the 'R33ystems’ sub-directary

Section 3: Using RIO'S_95 7

Session 1 (unconstrained mblem). In this session we compute a solution to the unconstrained non-
linear Problem RayleighThis system has twdates and one inputVe gart by defining the initial condi-
tions and a uniform inggation mesh er the time interal [0,2. 5] with a discretization lel of N = 50
intervals.

We @n tale a bok at the solution trajectories by simulating this system with some initial coitl.
will specify an arbitrary pieaegise linear (orderp = 2) spline by usingN + p—1= N +1 coeficients
and perform a simulation by callirggmulate.

>> N=50;

>> x0=[-5;-5]; % Initial conditions

>> t=[0:2.5/50:2.5]; % Wiform integration mesh
>> u0=zeros(1,N+1); % line with all coeff’s zero.
>> [j,x]=simulate(1,x0,u0,t,4,2);

>> plot(t,x)

[i.x]=simulate(1,x0,u0,t,4,2);
T T

Next, we find an approximate solution to the Problem Rayleigh, which will be the same type of spline as
u0, by using eitherriots or pdmin.

>> [ul,x1,f1]=riots(x0,u0,t,[],[],[],100,4);
>> [ul,x1,f1]=pdmin(x0,u0,t,[],[].[],100,4);

The first three input guments are the initial conditions, initial guess for the optimal control, and the inte-
gration mesh.The net three inputs are empty bratk indicating defult values which, in this case, spec-

ify that there are no controlier bounds, no control upper bounds, and no systems paranigtertast

two inputs specify that a maximum of 100 iterations are to bevatloand that ingration routine 4
(which is a fourth order Rungetita method) should be usetdhe outputs are the control solution, the
trajectory solution, and thealue of the objecte function.

The displayed output fopdmin is shavn belav. The displayed output farots depends on the
mathematical programming algorithm with which it is fak(see description oibts in §6).

Section 3: Using RIO'S_95 8

This is a nonlinear system with 2 states, 1 inputs and 0 parameters,
1 objective function,
0 nonlinear and 0 linear trajectory constraints,
0 nonlinear and 0 linear endpoint inequality constraints,
0 nonlinear and 0 linear endpoint equality constraints.
Initial Scale factor = 0.02937
Method = L-BFGS.
Quadratic fitting off.

Completed 1 pdmin iter ; step = +1.67e+00 (k= -1), ||free_grad|| = 1.47e-01, FFF, cost = 34.40807327949193
Completed 2 pdmin iters; step = +4.63e+00 (k= -3), ||free_grad|| = 1.01e-01, FFF, cost = 31.33402612711411
Completed 3 pdmin iters; step = +2.78e+00 (k= -2), ||free_grad|| = 5.26e-02, FFF, cost = 29.78609937166251
Completed 4 pdmin iters; step = +1.67e+00 (k= -1), ||free_grad|| = 2.25e-02, FFF, cost = 29.30022802876513
Completed 5 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad]|| = 9.03e-03, FFF, cost = 29.22362561134763
Completed 6 pdmin iters; step = +1.67e+00 (k= -1), ||free_grad|| = 2.61e-03, FFF, cost = 29.20263210973429
Completed 7 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 5.06e-04, FFF, cost = 29.20066785222028
Completed 8 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 1.80e-04, FFF, cost = 29.20060360626269
Completed 9 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 1.86e-05, FFF, cost = 29.20059986273411
Completed 10 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 5.94e-06, FFF, cost = 29.20059981048738
Completed 11 pdmin iters; step = +1.67e+00 (k= -1), ||free_grad|| = 2.07e-06, FFF, cost = 29.20059980021174
Completed 12 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 1.57e-07, FFF, cost = 29.20059979946436
Completed 13 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 5.18e-08, FFF, cost = 29.20059979945842
Completed 14 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 1.16e-08, FFF, cost = 29.20059979945757
Completed 15 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad]|| = 3.20e-10, TTF, cost = 29.20059979945753
Completed 16 pdmin iters; step = +6.00e-01 (k= +1), ||free_grad|| = 1.66e-10, TTT, cost = 29.20059979945752

Finished pdmin loop on the 16-th iteration.
Normal termination test satisfied.

The column labeled|free_grad|| gives the \alue of |1 f(77)|n,, the norm of the gradient of the
objective function. For problems with bounds on the free initial conditions and/or controls, this norm is
restricted to the subspace where the bounds are net.aér problems without state constraints,
[0 f (17)|H, goes to zero as a local minimizer is approachiéte column with three letters, each ar F,
indicates which of the three normal termination criterion (see descriptipdnoi in 8§6) are satisfied.

For problems with control or initial condition bounds there are four termination criteria.

We @n also solg this problem with quadratic splineg € 3) by usingN + p -1 =N +2 sline coefi-
cients.

>> u0=zeros(1,N+2);
>> [u2,x2,f2]=pdmin(x0,u0,t,[1,[1,[],100,4);

We @n viev the control solutions usingp_plot which plots spline functionsThe trajectory solutions
can be vieved usingplot or sp_plot

>> sp_plot(t,ul) % Rot linear spline solution
>> sp_plot(t,u2) % Rot quadratic spline solution

Section 3: Using RIO'S_95 9

sp_plot(t,ul)

sp_plot(t,u2)

Section 3: Using RIO'S_95

10

Session 2 (poblem with endpoint constraint). The useidefined functions for Problem Rayleigh,
solved in session 1, are written so that it will include the endpoint conskd@t5)= 0 if there is a
global Matlab wariable calledFLAGSset to the &lue of 1 (seget_flagsin 84). To nlve this problem
with the endpoint constraint we can use eitti@is or aug_lagmg. We nust clearsimulate before re-
solving so that theariableFLAGSgets read.

>> global FLAGS

>>FLAGS = 1;

>> clear simulate % FReset simulate so the it will check for FLAGS
>> simulate(0,[]); % Initialize

Loaded 1 flag.

Rayleigh

This is a nonlinear system with 2 states, 1 inputs and 0 parameters,
1 objective function,
0 nonlinear and 0 linear trajectory constraints,
0 nonlinear and 0 linear endpoint inequality constraints,
0 nonlinear and 1 linear endpoint equality constraints.

The output displayed abe $iows that one flag has been read from the Matlatkgpace. Thaext two
lines are messages produced by the-sgpplied routinesThe last set of data she the alue of the sys-
tem information (see discussion méq[] in the description ofnit, 84, and alssimulate, §5). Since
this problem has a state constraint, we can use e@ittselagmg or riots to sohe it.

>> x0=[-5;-5];

>> u0=zeros(1,51);

>> t=[0:2.5/50:2.5];

>> u=aug_lagrng(x0,u0,t,[],[],[].100,5,4);

Finished pdmin loop on the 2-nd iteration.
Step size too small.

Completed 1 Outer loop iterations.

Multipliers : -2.81973

Penalties : 10

Constraint Violations: 1.90255

Norm of unconstrained portion of Lagrangian gradient = 0.00646352
Rayleigh

Finished pdmin loop on the 15-th iteration.
Normal termination test satisfied.

Completed 2 Outer loop iterations.

Multipliers : -0.658243

Penalties : 10

Constraint Violations: 0.000483281

Norm of unconstrained portion of Lagrangian gradient = 0.000206008
Rayleigh

Finished pdmin loop on the 8-th iteration.
Normal termination test satisfied.

Section 3: Using RIO'S_95 11

Completed 3 Outer loop iterations.

Multipliers : -0.653453

Penalties : 10

Constraint Violations: -7.91394e-06

Norm of unconstrained portion of Lagrangian gradient = 1.37231e-06
Rayleigh

Finished pdmin loop on the 7-th iteration.
Normal termination test satisfied.

Completed 4 Outer loop iterations.

Multipliers : -0.653431

Penalties : 10

Constraint Violations: -8.6292e-07

Norm of unconstrained portion of Lagrangian gradient = 2.19012e-07
Objective Value : 29.8635

Normal termination of outer loop.

The displayed output reports that, at the current solution, the ebjeatue is 29.8635 and the endpoint
constraint is being violated by8. 63x 10°®. There is some error in thesalwes due to the irgeation
error of the fixd step-size intgration routinesWe @an get a more accurate measure by usingdhable
step-size intgration routine to simulate the system with the control solution

>> simulate(1,x0,u,t,5,0); % Smulate system using LSODA
>> simulate(2,1,1) % Braluate the objective function
ans =

29.8648
>> simulate(2,2,1) % Braluate the endpoint constraint
ans =

5.3852e-06

The intgration was performed with the daflt value of -8 for both the relatie and absolute local
integration error tolerancesSo the reportedalues aredirly accurate.

Section 3: Using RIO'S_95 12

Session 3 (Poblem with control bounds and free final time). This session demonstrates the tran-
scription, &plained in 82, of a free final time problem into afixfinal time problem.The transcribed
problem has bounds on the control and free initial stadso, distrib ute (see §7) is used to impre
integration mesh after an initial solution is fourd.more accurate solution will then be computed by re-
solving the problem on the wamesh.

The original problem, Problem Bang, is a minimum-time problem with three states and one input.
This problem is corerted into a fixed final time problem using the transcription described inGgly
one &tra state &riable vas needed since the problem has time-independent (autonomous) dyridmics.
augmented problem is implemented in the file ‘band-irst we will define the ingration mesh and then
the initial conditions.

>> N = 20; % [scretization level
>> T =10; % Mminal final time
>> t=[0:T/N:TJ; % Mminal time interval for maneuver

The nominal time inted is of durationT. Next, we specify a alue for¢f3, the duration scaleattor
which is the initial condition for the augmented stafee quantityT 3 represents our guess for the opti-
mal duration of the maneaw

>>x0=[0 0 1T; % Initial conditions for augmented system
>> fixed=[1 1 0]; % Wich initial conditions are fixed

>> x0_lower=[0 0 0.1]’; % Lower bound for free initial condition

>> x0_upper=[0 0 10]; % Ubper bound for free initial condition

>> X0=[x0,fixed,x0_lower,x0_upper]

X0 =
0 1.0000 0 0
0 1.0000 0 0
1.0000 0 0.1000 10.0000

The first column ofXO0 is the initial conditions for the problem; there are three states including the aug-
mented stateThe initial conditions for the original problem wex€®) = (0, 0)'. The initial condition for

the augmented state is sex@(3) = &2 = 1to indicate that our initial guess for the optimal final time is
one times the nominal final time ®f= 10, i.e, £&3T. The second column of0 indicates which initial
conditions are to be consideredefixand which are to be treated as fragables for the optimization
program to adjustA one indicates fizd and a zero indicates fre€he third and fourth columns pride

lower an upper bound for the free initial conditions.

>> u0=zeros(1,N+1);

>> [u,x,f]=riots(X0,u0,t,-2,1,[],100,2); % Slve problem; f=x(3,1)=x0(3)
>> f*T % $how the final time.
ans =

29.9813

Section 3: Using RIO'S_95 13

In this call toriots, we havealso specified a Weer bound of -2 and an upper bound of 1 for all of the con-
trol spline codicients. Sinceve are using second order splines, this isw@tpnt to specifying bounds
on the \alue of the control at the spline breakpoints,bounds oru(t,). We dso specify that the second
order Runge-Kitta intgration routine should be use@he objectie valuef = &3 is the duration scale
factor. The final time is gien by a+ (b —a)£% = T£3 = 10f . Here we see that the final time is 29.9813.
A plot of the control solution indicates aifly broad transition gion whereas wex@ect a bang-bang
solution. W aan try to impree the solution by redistriting the intgration mesh.We @an then re-sok

the problem using the wemesh and starting from the pfeus solution interpolated onto thewnenesh.
This nev mesh is stored imew_t , and new_u contains the control solution interpolated onto thi& ne
mesh.

>> [new_t,new_u]=distribute(t,u,x,2,],1,1); % R-distribute mesh
redistribute_factor = 7.0711

Redistributing mesh.

>> X0(:,1) = x(:,1);

>> [u,X,f]=riots(X0,new_u,new_t,-2,1,[],100,2);
>> f*10

ans =

30.0000

Notice that before callingots the second time, we set the initial conditions (the first columx0dfto
x(:,1) , the first column of the trajectory solution returned from the preceding aédkso Because:®

is a free wariable in the optimizatiorx(3,1) is different than what @s initially specified fox0(3) .
Sincex(3,1) is likely to be closer to the optimaahe foré® than our original guess we set the current
guess foiX0(3,1) tox(3,1)

We @n see the impr@ment in the control solution and the solution for the final tiffilee reported
final time solution is 30 and this happens to be Kaeteanswer The plot of the control solution before
and after the mesh redistifion is shavn belawv. The circles indicate where the mesh points are located.
The impraved solution does appear to be a bang-bang solution.

Control soln. before redistribution Control soln. after redistribution

1 1 ﬂ B
0.5F 0.5F R
o o g
—0.5 —0.5 g
_ak 1l |
—1.5 —1.5f |
-2 —2F F
25, 10 20 30 25, 10 20 30

time time

Section 3: Using RIO'S_95 14

Session 4 (Example using outgr Thisexample demonstrates theperimental progranouter which
repeatedly adjusts the igi@tion mesh between callsriots in order to achie a aksired solution accu-
ragy. We wseouter to sole the Goddard roak ascent problem implemented in the file ‘goddardltie
Goddard rockt problem is a free-time problem whose object to maximize the rockt’s dtitude sub-

ject to haing a fixed amount of fuel.This problem is particularly ditult because its solution contains a
singular sub-arcWe wse an initial guess af(t) = 1 for all t so that the roait starts out climbing and
does notdill into the ground We will use a second order spline representation and start with a discretiza-
tion level of N =50. Also,since this is a minimum-time problem, we augmented the system dynamics
with a fourth state that represents the duration saeatetf We dart by guessing a duration scadetor of

0.1 by setting?* = 0. 1and we specify [Ql] for the nominal time inteal. Thusthe nominal final time is
T&E4=0.1.

>>x0=[0110.1];
>> fixed=[1 1 1 O];
>> t=[0:1/50:1];

>> u0=ones(1,51);

Now outer is called with lever and upper control bounds of 0 and 3.5, resghgtino systems parame-

ters; a maximum of 300 iterations for each inner loop; a maximum of 10 outer loop iteration with a maxi-
mum discretization kesl of N =500; de&ult termination tolerances; imggeation algorithm 4 (RK4); and
mesh redistribtion stratgy 2.

>> [new_t,u,x]=outer([x0,fixed],u0,t,0,3.5,[],500,[10;500],4,[1,2);
Goddard

Completed 70 riots iterations. Normal Termination.
Doubling mesh.

========Completed 1 OUTER iteration=========

Norm of Lagrangian gradient = 3.43882e-05

Sum of constraint errors = 4.57119e-09

Objective function value = -1.01284

Integration error = 1.49993e-06

Goddard

Completed 114 riots iterations. Kuhn-Tucker conditions satisfied but sequence did not converge.

========Completed 2 OUTER iterations========
Norm of Lagrangian gradient = 4.64618e-06

Sum of constraint errors = 4.41294e-10

Objective function value = -1.01284

Integration error = 2.01538e-07

Change in solutions = 0.128447

Control error estimate = 0.0200655

Redistribution factor = 2.07904

Redistributing mesh.

New mesh contains 146 intervals. Old mesh contained 100 intervals.

Goddard

Section 3: Using RIO'S_95 15

Completed 206 riots iterations. Kuhn-Tucker conditions satisfied but sequence did not converge.

========Completed 3 OUTER iterations========
Norm of Lagrangian gradient = 2.38445e-08

Sum of constraint errors = 8.49733e-11
Objective function value = -1.01284
Integration error = 4.67382e-09

0.0878133
0.000452989

Change in solutions
Control error estimate

Normal Termination.
CPU time = 26.9167 seconds.

The message stating that thehk-Tucker conditions are satisfiedifothat the sequence did not zerge

is a message from NPSOL which is the nonlinear programming algorithed limithriots in this exam-

ple. Thismessage indicates that, although first order optimality conditions for optimality are satisfied (the
norm of the gradient of the Lagrangian isfisigntly small), the control functions from one iteration of
riots to the n&t have ot stopped changing completelyhe sources of this problem gigthe Goddard
problem is a singular optimal control problem; this means that small changes in the castretsre
portions of the time inteal have vey little effect on the objecte function and(ii) outer callsriots with

very tight corvergence tolerancesBecause of this, the calls tints probably performed mgmore iter

ations than were useful for thevék of accuray achieved. Choosingbetter comergence tolerances is a
subject for future research.

The optimal control and optimal state trajectories arevehan the ngt page. Notice that to plot
the optimal control we multiply the timesgtornew_t by x(4,1) which contains the duration scale
factor. The optimal final time for this problem, sinee= 0 and b = 1, is justx(4,1)=0.1989 . Note
that the final mass of the rastkis 0.6. This is the weight of the roek without ag fuel. Themaximum
height is the ngetive d the objectie function, i (t) =1.01284.

>> sp_plot(new_t*x(4,1),u)
>> plot(new_t*x(4,1),x(1,3))
>> plot(new_t*x(4,1),x(2,:))
>> plot(new_t*x(4,1),x(3,3))

Section 3: Using RIO'S_95 16

Optimal Control for the Goddard Rocket Problem

4 T T
35
3 -
2.5
2 -
1.5
1 -
0.5F
0 -
-0.5 ‘ ‘ ‘
0 0.02 0.04 0.06
Velocity
0.14
0.12 1
0.1r 4 1.01
0.08 N
0.06 1
1.005
0.04 N
0.02 b
(0] : 1
(6] 0.1 0.2

Section 3: Using RIO'S_95

1
0.08

|
0.1
Time

Altitude

1
0.12

1
0.14

1
0.16

1
0.18

Fuel

0.2

4. USER SUPPLIED SYSTEM SUBROUTINES

All of the functions in the description @CP in §2 are computed from the user functitns$ andg; the
derivatives o these functions are computed from the user functindl andDg. Two aher user func-
tions,activate andinit, are required for the purpose of passing information to and fronTR105.

Smoothness Requirements. The usersupplied functions must ti@ a ertain dgree of smoothness.
The smoothness requirement comes about for three reaBoes. the theory of diérential equations
requires, in general, th&it, x, u) be pecavise continuous with respect toLipschitz continuous with
respect tax andu and thatu()) be continuous, in order to ensure thdéstence and uniqueness of a solu-
tion satisfying the system of tifential equationsA finite number of discontinuities im([1x, u) and u([}
are allavable. Secondthe optimization routines needs at least one continuousatilesi d the objectie
and constraint functiong([iDland I (t, IOl Two continuous dewiatives ae needed in order for there to be
a chance of superlinear coergence. Thehird reason is that the accuyasf numerical intgration of dif-
ferential equations depends on the smoothneb$Ltfil) and [(LICI). For a fixed step-size methods with
orders, d®h(t, x, u)/ax® and d®h(t, x, u)/du® should be continuous (or the £ 1)-th partial should be
Lipschitz continuous) Furthermore, andiscontinuities inh(LIx, u() or its dewatives should occur only

at intagration breakpoinfs Corversely, the user should place iggetion breakpoints wherer such dis-

continuities occur The same considerations also hold for the funcl{br, u). For variable step-size
integration, h(t, x, u) and I(t, x, u) should hae & least continuous partial destives d order one with

respect tax andu. Again, ary discontinuities inh(L1x, u(D) andl(LIx, u(D) or its denvatives hould only

occur at intgration break points.

Constraint Qualifications. A common requirement of mathematical programming algorithms is linear
independence of the agi constraints gradients at a solutiolt.is easy to mathematically specify alid
constraint in such aay that this condition is violated-or example, consider a scalar constraint of the
form g(u) = 0. Thisconstraint can be specified as

gu)*=0.

However, & (g(u)?) = 2g(u) §2. Thus, if this constraint is agé & the solutiond’, i.e., g(U’) = 0, then
the gradient of this constraint is zerBo this specification for the constraint violates the constraint quali-

fication. Havever, if the constraint is specified simply as

g(u) =0,
then the constraint qualification is not violated.

The user functions can be supplied as object code or as MTithesC-syntax and M-file syntax for
these functions are\gin below. Because all guments to the object codergions of the functions are
passed by reference, the object code format is compatible wittafr. Atemplate for these functions
can be found in the filgystems/template.c . There are also seral example problems in theys-
tems directory In addition to the usesupplied routines, this section also describasdter functions,
get_flagsandtime_fnc, that are callable by user object code.

"Note that discontinuities in(t) can only occur at the spline breakpoirits,

Section 4: User functions 18

There are three main tifences between object code and M-fdesions of the user functions:
* The programs in RIDS_95 aecute muchdster when object code is used.

» Object code ersions of the user functions do not need to assign zduves/to array components
which are alvays zero. M-file versions must set all arraglues (with theeception ofsys_inif).

» There must be a separate M-file for each function with the same name as that fuflcorames
begin with sys_ followed by the name of the functioftor example, sys_Dh.m is the M-file for the
user functionsys_Dh The directory in which these M-files are located must be in Matkssiairch
path.

* Important: Arrays in Matlab are inded garting from 1 whereas in C arrays are xmkdarting
from 0. For example,neq[4] in C code has an M-file eqalent ofneq(5) .

Section 4: User functions 19

activate

activate, sys_activate

Purpose

This function is alays called once before wamf the other usesupplied functions.t allows the user to
perform am preliminary setup needed, foxample, loading a data array from a file.

C Syntax

void activate(message)
char **message;
{

*message =",
/* Any setup routines go here. */
}
M-file Syntax
function message = sys_activate
message =,

Description

If the message string is set, that string will be printed out wigesenulate (form 0) or an optimization
routine is called.lt is useful to include the name of the optimal control problem as the message.

See Also: get_flags

Section 4: User functions 20

init

init, sys_init

Purpose

This function sergs two purposes. Firstit provides information about the optimal control problem to
RIOTS_95. Secondt allows system parameters to be passed from Matlab to thelefseed functions
at run-time. These system parameters can be used, for instance, to specify constiaintUalike acti-
vate, init may be called multiple timesThe arrayneq[] is explained after the syntax.

C Syntax

void init(neq,params)
int neq[];
double *params;

if (params == NULL) {
[* Set values in the neq[] array. */

else {
/* Read in runtime system parameters. */

}
}

M-file Syntax

function neqg = sys_init(params)

% if p arams is NULL then setup neq. Otherwise read system
% parameters in params. In Matlab, arrays are indexed
% dgarting from 1, so neq(i) corresponds to the C statement
% req[i-1].
if params == [],
% Each row of neq consists of two columns. The value in
% the first column specifies which piece of system
% information to set. The value in the second column is
% the information. For example, to indicate that the

% gystem has 5 system parameters, one row in neq should be
% [3 5] s ince neq(3) stores the number of system
% parameters.

% Hre we set nstates = 2; ninputs = 1; 1 nonlinear
% endpoint constr.
neq=[12;21;121];
else
% Rad in systems parameters from params and store them in
% the global variable sys_params which will be accessible
% to other systems M-files.
global sys_params
Sys_params = params;
end

Section 4: User functions 21

init
Description

When this functions is called, thanableparams will be set to 0 NULLD) if init() is expected to
return information about the optimal control problem viartbg[] array Otherwise params is a \ec-
tor of system parameters being passed from Matlab to the psEgfam. Wherparams==0 , the \alues
inneq[] should be set to indicate the folling:

neq[0] --- Numberof state wariables.

neq[l] --- Numberof inputs.

neq[2] --- Numberof system parameters.

neq[3] --- Not used on calls to init(). Contains time inde

neq[4] -- Not used on calls to init().Used to indicate which function tosauate.
neq[5] -- Numberof objective functions (must equal 1).

neq[6] --- Numberof general nonlinear trajectory inequality constraints.
neq[7] --- Numberof general linear trajectory inequality constraints.
neq[8] --- Numberof general nonlinear endpoint inequality constraints.
neq[9] --- Numberof general linear endpoint inequality constraints.
neq[10] --- Numberof general nonlinear endpoint equality constraints.
neq[ll] --- Numberof general linear endpoint equality constraints.
neq[l2] --- Indicatestype of system dynamics and cost functions:

0 > nonlinear system and cost,

1 -> linear system,

2 > linear and time-iveriant system,

3 > linear system with quadratic cost,

4 > linear and time-ivariant with quadratic cost.

Remember that, for M-filesieq(i) is equvaent to the C-code statememeq[i-1] . The \alues of
neq[] all default to zero gceptneq[5] which defults to 1. The relationship between thalues in
neq] and the general problem description OCP given in 8 is & follows: n =neq[0] ,
m =neq[1] , p=neq2] , ai=neq6]tneq(7] , dei = neq[8]+neq[9] and
Jee = Neg[10]+neq[11] . The locationsneq[3] andneg[4] are used in calls to the other user
defined functions.

If init setsneq[2]>0 |, theninit will be called agin with params pointing to an array of system
parameters which are pfided by the user at run-timelhese parameters can be stored in globat v
ables for use at other times byyaof the other usedefined functions.Some &les of useful system
parameters include phical coeficients and penalty function parametei$iese parameters aredikand
will not be adjusted during optimizatiorPaameters that are to be used as decisatables must be
specified as initial conditions to augmented statesth 7 = 0.

Notes

1. Control bounds should be indicated separately when calling the optimization roufmesiot
include aly simple bound constraints in the general constraiisnilarly, Smple bounds on free initial
conditions should be specified on the command line.

2. For nonlinear systems, all constraintgdlving a state &riable are nonlinear functions of the control.
Thus, the constrairg(&, x(b)) = x(b) = 0, while linear in its ayjuments, is nonlinear with respectuo
The user does not need to account for this situatiomeM®n, and should indicate thaj is a linear con-
straint. RIS _95 automatically treats all general constraints for nonlinear systems as nonlinear

Section 4: User functions 22

h, sys_h

Purpose

This function sergs only one purpose, to compung, X, u), the right hand side of the flifential equa-
tions describing the system dynamics.

C Syntax

void h(neq,t,x,u,xdot)
int neq(];
double *t,x[NSTATES],u[NINPUTS],xdot[NSTATES];

/* Compute xdot(t) = h(t,x(t),u(t)). */
}

M-file Syntax
function xdot = sys_h(neq,t,x,u)
global sys_params

% >xdot must be a column vector with n rows.
Description

On entrancet is the current timex is the current stateegtor andu is the current controlactor Also,
neq[3] is set to the current discrete-time irdle — 1, such that, <t < t®.

On «it, the arrayxdot[] should contain the computedlue of h(t, x,u). The values of xdot[]
default to zero for the object codergion. Notethat for free final time problems thanablet should
not be used because detives o the system functions with respecttt@re not computedln the case of
non-autonomous systems, the user should augment theagiatdeswith an etra stataepresenting time
(see transcription for free final time problems in 8§2).

See Also: time_fnc.

8The index isk — 1 snce indeing for C code starts at zer&or M-files, neq (4) = k.

Section 4: User functions 23

1, sys_1

Purpose

This function sergs two purposes. Itis used to computealues for the intgrands
Io(t, X, u), and the alues of state trajectory constrairigt, X, u).

C Syntax

double I(neq,t,x,u)
int neq(];
double *t,X[NSTATES],u[NINPUTS];

int F_num, constraint_num;
double z;

F_num = neq[4];

if (F_ num==1){
[* Compute z = I(t,x(t),u(t)) for the integrand.
/* If this integrand is identically zero,
/* set z =0 and neq[3] = -1.

else {
constraint_num = F_num - 1;
/* Compute z = I(t,x(t),u(t) for the */
[* constraint_num trajectory constraint. */

}

return z;

}
M-file Syntax

function z = sys_I(neq,t,x,u)
% z is a scalar.

global sys_params
F_NUM = neq(5);

if F_NUM ==

% @mpute z = I(t,x(t),u(t)) for the objective integrand.
else

constraint_num = F_num - 1;

% @mpute z = I(t,x(t),u(t)) for the constraint_num

% traj. constraint.
end

Section 4: User functions

of cost functions,

*/
*/
*/

24

Description

On entrancet is the current timex is the current stateeetor andu is the current controlector Also,
neq[3] is set to the current discrete-time irde— 1 such thatt, <t <t (see footnote foh) and
neq[4] is used to indicate which irgeand or trajectory constraint is to besleated. Notehat, for free
final time problems, theaviablet should not be used because aives o the system functions with
respect td are not computedin this case, the user should augment the statable with an etra time
state and anxéra final-time state as described in 82.

If ned4] = 1, thenz should be set tef*44(t, x, u). If 17°94/(CI001= O then, besides returning D,
(in object code ®rsions) can seted3] = — 1 to indicate that the function is identically zerdhe latter
increases @itieng because it tells RIDS_95 that there is no irgral cost. Only the function is alloved
to modify ned3]. Regardless of ha ned3] is set,| mustalways return a &lue &en if the returned alue
is zero.

If ned4] > 1,thenz should be set t ri]eq4] _1(t, X, u). If there are both linear and nonlinear trajec-

tory constraints, the nonlinear constraints must precede those that are Tineasrdering of the func-
tions computed byis summarized in the folging table:

14 function to compute
ned4] = 1 ned4] lo(t, X, u)

l#(t, x, u), nonlinear
It (t, X, u), linear

ned4] > 1 ned4] -1

Section 4: User functions 25

g, Sys_§g

Purpose

This function sergs two purposes. lis used to compute the endpoint cost functig€, x(b)) and the
endpoint inequality and equality constraigks(&, X(b)) and g.d&, X(b)). The syntax for this function
includes an input for the timeakiablet for consideration of future implementations and should not be
used. Problemivolving a cost on the final tim& should use the transcription for free final time prob-
lems described in §2.

C Syntax

double g(neq,t,x0,xf)
int neq(];
double *t,xO[NSTATES] xf[NSTATES];

int F_num, constraint_num;
double value;

F_num = neq[4];
if (F_ num<=1){
/* Compute value of g(t,x0,xf) for the */

/* F_num cost function. */
}
else {

constraint_num = F_num - 1;

/* Compute value g(t,x0,xf) for the */

[* constraint_num endpoint constraint. */

return value;

}
M-file Syntax

function J = g(neq,t,x0,xf)
% J is a scalar.

global sys_params
F_NUM = neq(5);
if F_NUM <= sys_params(6)
% Ompute g(t,x0,xf) for cost function.
elseif F_NUM ==
% @mpute g(t,x0,xf) for endpoint constraints.
end

Section 4: User functions 26

Description

On entrancex0 is the initial state &ctor andxf is the final stateector The valueneq[4] is used to
indicate which cost function or endpoint constraint is tovakiated. Nonlineaconstraints must precede
linear constraintsThe order of functions to be computed is summarized in thenMoliptable:

4 function to compute
nedd] = 1 1 9o(%, x(0)

gl (£, (b)), nonlinear
gl.(¢, x(b)), linear
gua(&, (b)), nonlinear
gLe(£, (b)), linear

1<ned4] £1+qg ned4] -1

1+ Oei < neq4] <1+ Oei + Jee nec[4] -1- Qei

See Also: time_fnc.

Section 4: User functions 27

Dh, DI, Dg

Dh, sys_Dh
D1, sys_DI
Dg, sys_Dg

Purpose

These functions prade the dewatives o the usesrsupplied function with respect to thegamentsx and
u. The programgsiots (see §6) can be used without yiding these devitives by selecting the finite-
difference option.In this case, dummy functions must be suppliedioyDI andDg.

C Syntax

void Dh(neq,t,x,u,A,B)
int neq(];
double *t,X[NSTATES],u[NINPUTS];
double AINSTATES][NSTATES],B[INSTATES][NINPUTS];

/* The A matrix should contain dh(t,x,u)/dx. */
/* The B matrix should contain dh(t,x,u)/du. */

}

double Dl(neq,t,x,u,l_x,l_u)
int neq[];
double *t,x[NSTATES],u[NINPUTS],|_X[NSTATES],|_u[NINPUTS];

{
/* |_x[] should contain dI(t,x,u)/dx */
/*|_u[] should contain dli(t,x,u)/du */
[* according to the value of neq[4]. */
[* The return value is dI(t,x0,xf)/dt which */
* s not currently used by RIOTS. *
return 0.0;

}

double Dg(neq,t,x0,xf,g_x0,g_xf)
int neq(];
double *t,xO[NSTATES],xf[NSTATES],J_xf[NSTATES];

{
/* g_x0[] should contain dg(t,x0,xf)/dx0. */
/* g_xf[] should contain dg(t,x0,xf)/dxf. */
/¥ according to the value of neq[4]. */
/* The return value is dg(t,x0,xf)/dt which */
* s not currently used by RIOTS. */
return 0.0;

}

Section 4: User functions 28

Dh, DI, Dg

M-file Syntax

function [A,B] = sys_Dh(neq,t,x,u)
global sys_params

% A rmast be an n by n matrix.

% B mst be an n by m matrix.

function [I_x,l_u,l_t] = sys_Dl(neq,t,x,u)
global sys_params

% | _x should be a row vector of length n.
% |_u should be a row vector of length m.
% | _tis a scalar---not currently used.

function [g_x0,g9_xf,g t] = sys_cost(neq,t,x0,xf)
global sys_params

% g x0 and g_xf are row vectors of length n.
% g tis a scalar---not currently used.

Description

The input \ariables and the ordering of objees and constraints are the same for thesevetive func-
tions as the are for the corresponding functiohsl, andg. The dervatives with respect td are not used
in the current implementation of RT@_95 and can be set to zerbhe denatives should be stored in
the arrays as folles:

Function Firsoutput inde range Secondutput inde range
.. dn(t, x,u) 0 i=0:n-1 .. dh(t, x,u) 0 i=0n-1
oh | Al = g 2ol | s = o 0n o
O O+1,j+1 1= 0 Ch+a,j+1 1=0
0 0
DI | (i) = w0 i=0m-1 | 1yi]=0GxWo i=0m-1
dx du
O O+ 0 e
0 0
Dg g x0[i] = 09 x0.xF) i=0mn-1 | g xf[]= 0XLX0XND i=0m-1
dx0 dxf
O Li+1 O L+1
h O i= 1 h O i=1
sys Dh | A)= G X i g = ey b
0 0, j=1n oo duog, j=1m
0 0
sys_DI I_x(i) = EHMD i=1ln I_u(i) = WD i=1:m
o % o o % o
)0)0
sys_Dg g_x0() = WD i=1ln g xf(i) = W i=1:m
o 9 g o ™ g

Note that, forsys Dh RIOTS_95 automatically accounts for thect that Matlab stores matrices trans-
posed relatie © how they are stored in C.

Section 4: User functions 29

get_flags

get_flags

Purpose

This function allevs usersupplied object code to read ector of intgers from Matlals workspace.

C Syntax

int get_flags(flags,n)
int flags[],*n;

Description

A call to get_flagscausedlags[] to be loaded with up to integers from the arrafLAGSIif FLAGS
exists in Matlabs workspace. lis the uses responsibility to allocate enough memoryflags]] to
storen integers. Thevalue returned byet flagsindicates the number of irgers read intdlags|]

The main purpose afet_flagsis to allov a dngle system program to be able to represent more than
one problem configuratioriThe call toget_flagsusually tales place within the uséunctionactivate. In
the xample belw, get_flagsreads in the number of constraints to use for the optimal control problem.

Example

extern int get_flags();
static int Constraints;

void activate(message)
char *message;
{

int n,flags[1];
*message = "Use FLAGS to specify number of constraints.";
n=1;
if (get_flags(flags,&n) > 0);
Constraints = flags[0];

else
Constraints = 0;

Notes

1. ltis best to definéLAGSas a global ariable in cassimulate gets called from within an M-file.
This is accomplished by typing

>> global FLAGS
At the Matlab prompt.To dear FLAGSuse the Matlab command
>> clear global FLAGS

2. Sinceactivate is called once onlyyou must cleassimulate if you want to re-read thealues in
FLAGS To dearsimulate, a the Matlab prompt type

>> clear simulate

3. For M-files, aly global variable can be read directly from Matlamiorkspace so an M-fileevsion of
get_flagsis not needed.

Section 4: User functions 30

time_fnc

time_fnc

Purpose

This function allevs usersupplied object code to malalls back to a usesupplied Matlab m-function
calledsys_time_fnc.mwhich can be used to compute a function of tir@all-backs to Matlab areevy

slow. Since this function can be called thousand of times during the course of a single system simulation
it is best to preide the time function as part of the object code if possible.

C Syntax

void time_fnc(t,index,flag,result)
int *index,*flag;
double *t,result[];

Syntax of sys_time_fnc.m
function f = sys_time_fnc(tvec)

% tvec = [time;index;flag]
% @mpute f(time,index,flag).

Description

If time_fnc is to called by one of the uskmctions, then the user must supply an m-function named
sys_time_fnc The inputstvec(1)=time and tvec(2)=index to sys_time_fncare related by
tindex S time < tihgexr1- The \alue ofindex passed teys_time_fncis one greater than thalue passed
from time_fnc to compensate for thadt the Matlab indices start from 1 whereas C indices start from 0.
The inputflag is an intger that can be used to select from amonfgmint time functions.Even if

flag is not used, imustbe set to some inger \alue.

The \alues in the ectorf returned fromsys_time_fncare stored imresult which must hae
enough memory allocated for it to store theses.

Section 4: User functions 31

Example

time_fnc

Suppose we ant| to computef (t)x*(t) where f(t) = sin(t) + y4(t) with y4(t) is ome pre-computed
global \ariable in the Matlab wrkspace. Thewe can uséime_fnc to computef (t) and use this alue to

multiply x[0]

extern void time_fnc();
double I(neq,t,x,u)
int neq(];

double *t,x[INSTATES],u[NINPUTS];

int i,zero;
double result;

i = neq[3];
zero =0;

time_fnc(t,&i,&zero,&result);

return result*x[0];

Discrete-time index. */

Call time_fnc with flag=0. */
/* Return f(t)*x1(t).

Here is the function that computdgt). It computes dferent functions depending on thalwe of

flag=t(3) . In our example, it is only called witflag=0

function f = sys_time_fnc(t)

global yd
time = t(1);
index = t(2);
flag = t(3);
if flag==0
f = y d(time) + sin(time);
else
f = a nother_fnc(time);
end

Section 4: User functions

% Suppose yd is a pre-computed, global variable.

32

5. SIMULATION ROUTINES

This section describes the central program inTREHA5,simulate. All of the optimization programs in
RIOTS_95 are wilt aroundsimulate which is responsible for computing all functioalwes and gradients
and seres as an inteate between the userbutines and Matlab

The computation of functionalues and gradients is performed on thegiragon mesh

tn = {tnk} i

This mesh also specifies the breakpoints of the control splifeesny meshty we define

ANk =tk ~ Nk -

The \alues of the trajectories computed $iynulate are gven & the timesty , and are denotedy y,
k=1,..,N+1. Thusxy g represents the computed approximation to the true soluftr) of the dif-
ferential equatiorx = h(t, x, u), x(a) = £&. The subscripN is often omitted when its its presence is clear
from contet.

Spline Representation of contols. The controlau are represented as splinéhese splines arewgn
by

N+p-1

ut) = 2 axdry k()

whereg, [R™ andgy,, , «(Dlis the k-th B-spline basis element of ordeydefined on the knot sequence
formed fromty by repeating its endpoingstimes. CurrentlyRIOTS_95 does not aNerepeated interior
knots. Vi will denote the collection of spline cdiefents by

a* o}
For single input systemsy is a rav vector Those interested in more details about splines are referred to
the ecellent referencfs]. Thetimesty, k = 1,... N, define the spline breakpoint©n each interal
[ty, tks1], the spline coincides with amth order polynomial. Thus, fourth order splines are made up of
pieceavise cubic polynomials and are called cubic splinggnilarly, third order splines are piesise
guadratic, second order splines are pigése linear and first order splines are pigice constant.For
first and second order splines, = u(ty). For higherorder splines, the B-spline basis elements aaiel€
ated using the recursion formula in (A2.2a).

The following pages describg@mulate. First, the syntax and functionality eimulate is presented.
This is folloved by a description of the methods used by thgiat®n routines irsimulate to compute
function walues and gradientdzinally, two functions,check _deriv andcheck_grad for checking user
supplied dewiative information, and the functioevd_fnc are described.

Section 5: Simulation Routines 33

simulate

simulate

Purpose

This is the central program in RT@_95. Theprimary purpose ofimulate is to pravide function alues
and gradients of the objeats end constraints using one of six igtation algorithms.The optimization
routines in RIQ'S_95 are bilt aroundsimulate. This program also seeg as a general intade to the
usersupplied functions and primles some statistical information.

There are currently gen different forms in whichsimulate can be called.Form 1 and form 2
(which is more coveniently accessed usirgyd_fnc) are the most useful for the usefhe other forms
are used primarily by other programs in R 95. Thdorm is indicated by the first gmment to simu-
late. Aseparate description for each form igegibelow.

Form O
[info,simed] = simulate(0,{params})
Form 1
[f,x,du,dz,p] = simulate(1,x0,u,t,ialg,action)

Form 2

f=simulate(2,f_number,1)
[du,dz,p] = simulate(2,f_number,action)

Form 3

[xdot,zdot] = simulate(3,x,u,t,{f_num,{k}})
[xdot,zdot,pdot] = simulate(3,x,u,t,p,{k})

Form 4

[h_x,h_u,l_x,|_u] = simulate(4,x,u,t,{f_num {k}})
Form 5

[0,9_x0,g_xf] = simulate(5,x0,xf,tf {f _num})
Form 6

stats = simulate(6)
Form 7

Ite = simulate(7)

Section 5: Simulation Routines 34

Description of Inputs and Outputs
The following table describes the inputs that are required byahieus forms ogimulate.

simulate

Table S1
Input numbeof rows numbef columns description
x0 n 1° initial state
xf n 1 final state
u m N+p-1 control vector
t 1 N+1 time vector
tf lto4 1 final time
ialg 1 1 integration algorithm
action 1 1 (see belw)
f_num 1 1 (see belw)
params (see belw) (seebelaw) systemparameters

The following table describes the outputs that are returned byatiwug forms osimulate.

Table S2
Output numbeof rows numbeof columns description
f 1 1 objective a constraint alue
X n N+1 date trajectory
p n N+1 adjoint trajectory
du m N+p-1 control gradient
dxo0 n 1 gradient of initial conditions
lte n+1 N+1 local intgyration error
xdot n N+1 h(t, x, u)
zdot 1 N+1 I(t, %, u)
h_x n n oh/ox
h u n m oh/ou
| X 1 n ol /ox
| u 1 m ol /ou
g_x0 1 n 09/0xg
g_xf 1 n 0g/0x¢

If a division by zero occurs during a simulati@mmulate returns the MatlabariableNaN which stands
for “Not a Number’, in the first component of each outputhis can be detected, if desired, using the
Matlab functionisnan()

Note: The length of the controlector depends on the control representatioatrently al of the inte-
gration routines are setup tamk with splines of ordep defined on the knot sequence constructed from
ty. The current implementation of RTG_95 does not alw repeated interior knotsThe length (num-
ber of columns) ofi anddu is equal toN + p — 1 whereN=length(t)-1 is the number of interls in

%0 can be a matrixut only the first column is used.

Section 5: Simulation Routines 35

simulate

the intggration mesh.The allavable spline orders depends on the gnédion algorithmijalg , according
to the follawing table:

Table S3

IALG Order of spline representation
0 (discrete) discrete-timeontrols
1 (Euler) p=1
2 (RK2) p=2
3 (RK3) p=2
4 (RK4) p=2234
5 (LSODA) p=1,2734°
6 (LSODA w/0 Jacobians)| p=1,2,3,4°

When more than one spline order is possible, thgiaten determines the order of the spline representa-
tion by comparing the length of the control inputo the length of the time inptit If LSODA is alled

with ialg=5 , the user must supp% and% in the useffunctionsDh andDI. If the user has not pro-
grammed these Jacobians, LSOMust be called withialg=6 so that, if needed, these Jacobians will
be computed by finite-dérences. Thelifferent intgration methods are discussed in detail foifg the
description of thearious forms in whiclsimulate can be called.

Bugs

1. Theremay be a problem with computation of gradients for theable step-size ingeation algo-
rithm (ialg=5,6) if the number of interior knots,,qs is different than one (see description of form 1
and gradient computations for LS@Delow).

See Also: evd fnc

Description of Diff erent Forms
[info,sinmed] = sinulate(O, {parans})

This form is used to load system parameters and to return system informagp@amams is supplied,
simulate will make a @ll to init so that the uses’code can read in these parametéisrmally params

is a vector It can be a matrix in which case the user shoekepkin mind that Matlab stores matrices col-
umn-wise (Brtran style).If the system has no parameters then either patams or setparams=|]

If no output \ariables are present in this callsimulate the system message loaded on the calttivate
and other information about the system will be displayed.

®The maximum spline order alled by simulate when using LSOB can be increased by changing the pre-compiler define symbol
MAX_ORDER adams.c.

Section 5: Simulation Routines 36

simulate

The following is a list of the dferent \alues ininfo returned bysimulate:

info(1) number of states

info(2) number of inputs

info(3) number of system parameters

info(4) (resered)

info(5) (resered)

info(6) number of objectie functions

info(7) number of nonlinear trajectory inequality constraints
info(8) number of linear trajectory inequality constraints
info(9) number of nonlinear endpoint inequality constraints
info(10) number of linear endpoint inequality constraints
info(11) number of nonlinear endpoint equality constraints
info(12) number of linear endpoint equality constraints
info(13) type of system (O through 4)

0: nonlinear dynamics and objei

1: linear dynamics; nonlinear objacti

2: linear time-invariant dynamics; nonlinear objeesi

3: linear dynamics; quadratic objei

4: linear time-invariant dynamics; quadratic objeoti
info(14) number of mesh points used in the most recent simulation

The scalar outpusimed is used to indicate whether a call gonulate (form 1) has been maddf
simed=1 then a simulation of the system has occur®therwisesimed=0 .

[f,X,du,dx0,p] = sinulate(1,x0,u,t,ialg,action)

This form causes the system dynamics; h(t, u, x) with x(a) = x0, to be intgrated using the ingga-
tion method specified bialg (cf. Table S3). Also, the aluef of the first objectie function, and possi-
bly its gradientsdu anddx0 and the adjoinp, can be gauated. Onlythe first column okO is read.
The strictly increasing timeectort of length N +1 gecifies the intgration mesh ond, b] with
t (1) = a andt (N +1)=b. The controlu is composed ofn rows of spline codicients.

The calculations performed Igymulate (form 2) depend on thealue ofaction . These actions
are listed in the follwing table:

Table S4

Action Returnvalues

no return \alues

function \alue f

f and system trajectory

f, x and control and initial condition gradiertts anddz
f, X, du, dzand the adjoint trajectorp.

ArWNEFLO

Section 5: Simulation Routines 37

simulate

When using the ariable step-size method LS@Dialg = 5,6), the agumentialg can
include three additional pieces of data:

‘ Setting ‘ Deéult Value
ialg(2) Number of internal knots used during gradient computation. 1
ialg(3) Relatve integration tolerance. le-8
ialg(4) Absolute intgration tolerance. le-8

The meaning of‘internal knots’ is dscussed bels in the description of gradient computation with
LSODA.

Example

The folloving commands, typed at the Matlab prompt, will simulate a three state system ovitiptits
using intgration algorithm RK4 and quadratic splinéghe simulation time is fronma = 0 until b=2.5
and there ar& = 100 intenals in the intgration mesh.

>> N=100;

>>t =[0:2.5/N:2.5];

>> x0 = [1;0;3.5];

>> u0 = ones(2,N+2); % W(t)=[1;1];
>> [j,x] = simulate(1,x0,u0,t,4,2);

j = sinmulate(2,f_nunber, 1)
[du, dx0, p] = simnulate(2,f_nunber, acti on)
This form allavs function \alues and gradients to be computed without re-simulating the systeial
to this form must be proceeded by a calsimulate (form 1). The results are computed from the most
recent inputsx0,u,t,ialg) for the call tosimulate, form 1. The following table shas the relation-
ship between thealue off number , and the function alue or gradient which is computed.

Table S5

f_number range Function Function to bealuated

b
1<f number <n; gy (&, x(b)) +I [o(t, X, u)dt v = f_number
a

n, <f_number <n, 1% (t, x(t), u(t)) v=n%(N+1)+1,t=t where
n=f number —-n;-1and
k =f number —-n;—-v(N+1).

n, <f_number <n; gsi(&, x(b)) v =f number -n,

n; <f_number <n, 0ue(&, x(b)) v =f number -ns

wheren; = q, is the number of objeet functions,n, = n1 + g, (N + 1) with g; the number of trajectory
constraintsnz = N, + g With gej the number of endpoint inequality constraints, ape N3 + gee With
Jee the number of endpoint equality constraint$ie notatiom%m means the remainder aftewidion of
n by m (n modulom). Thus,for trajectory constraints, the-th constraint (withv = n%(N +1)+1) is

Section 5: Simulation Routines 38

simulate

evduated at time.

If action=2 , only du anddx0 are returned.If action=3 , du, dxO andp are returned.The
function,evd_fnc, provides a cowenient interfice to this form.

[xdot, zdot] = sinmulate(3,x,u,t,{f_num{k}})
[xdot, zdot, pdot] = simulate(3,x,u,t,p,{k})

This form eauates (as opposed to igtates) the follwing quantities:x = h(t, x, u), z = I(t, x,u), and
p=- (ah(té’)‘('”)T p+ a'(tgj(’mT) at the times specified hy. These functions arevauated at the points in.
If f num is specified,yv = f_num, otherwisev = 1. Thefunction IV(CI[]J) is evaluated according to
Table S5 abwe. The last inputk, can only be supplied if is a single time pointlt is used to indicate
the discrete-time inteal containingt . That is,k is such that, <t <t,1. If kis given, | is called with
neq[3] =k -1. Inthis call, the alues inu represent pointwisealues ofu(t), not its spline codif
cients. Thanputsx andu must hae the same number of columnstas

[h_x,h_u, I _x,I _u] =simulate(4,x,u,t,{f _num{k}})

This form eauates?¢xu | Ixd "AXL) gy ALXY) | this call,t must be a single time pointf

f _num is specifiedy = f_num, otherwisev = 1. Thefunction!”([I[J)lis evaluated according toable

S5 abee. The last inputk, indicates the discrete-time intaivcontainingt . That is,k is such that
ty St <ty IfKis given,lis called withneq[3] =k —1. Inthis call, the ®lues inu represent point-
wise \alues ofu(t), not its spline codétients.

[9,9_x0,g_xf] = simulate(5,x0,xf,tf,{f_nunt})

This form eauatesg? (x0, xf), 29°09X0) gng 99°60X0) "t f num s specifiedy = f_num . Otherwise
v = 1. Theinputtf gets passed to the user functigrendDg (see descriptions in §2) for compatibility
with future releases of RIC5_95.

stats = simul at e(6)

This form praides statistics on komary times the functions andDh have teen @auated, hav mary
times the system has been simulated to produce the trajegtang hav mary times functions or the
gradients off V(G0 g" (L or I (GG havebeen computedThe following table indicates what the com-
ponents oftats represent:

Section 5: Simulation Routines 39

simulate

Table S6
Component Meaning
stats(1) Number of calls tdn.
stats(2) Number of calls tdh.
stats(3) Number of simulations.
stats(4) Number of function eduations.
stats(5) Number of gradientwvauations.

Ite = sinulate(7)

This form, which must be preceded by a calsitmulate (form 1) withialg=1,2,3,4 , returns esti-
mates of the local truncation error for theefixstep-size Rungethia intgyration routines.The local
truncation error is gen, fork = 1,... N, by

_ OXi(tirn) = Xner2 O
U Zk(tk+1) ~ZN k+1 O

wherex(ty+1) and z(t,+1) are the solutions of

Itek

XO_ Oh(x,u) O X(te) = Xnk
ZO O3t x,u)D’ z(t)=0

andXy k+1 andzy x+1 are the quantities computed by one Rungétdstep fronxy x and 0, respeately.
These local truncations errors are estimated using doubdgdtiten steps as described4n Sec. 4.3.1].
The local truncation error estimates are usedibtyib ute (see description in 87) to redistuiie the inte-
gration mesh points in order to increasegraion accurac

, O [ty teed] -

Section 5: Simulation Routines 40

simulate

IMPLEMENTATION OF THE INTEGRATION ROUTINES

Here we discuss some of the implementation details of tfexetit intgration routines wilt into simu-
late.

System Sim ulation

System simulation is accomplished by fard inteyration of the dilerential equations used to describe
the system.There are four figd step-size Rungetitta intgyrators, one ariable step-size inggator
(LSODA), and one discrete-time salv The RK intgrators and LSOR produce approximate solutions
to the system of dérential equation

x = h(t,x,u), x(@) = ¢

z=I(t,x,u), z@=0

on the interal t{IJ [a, b]. Thefour Runge-Kitta int@rators are Eules’method, impreed Euler, Kutta’s
formula and the classical Rungetta method (seeé or[4, Sec. 4.2]) and are of order 1, 2, 3 and 4
respectrely. The discrete-time inggator soles

Xie1 = D, X, U) , Xo =&

Z1 = I (te, X Ug) , 2= 0
fork =1,...,N.

The \ariable step-size ingeator is a program called LS®@)8,9]. LSODMA can sole hoth stif and
non-stif differential equationsIn the non-stif mode, LSOMA operates as an Adams-Moulton linear
multi-step method.If LSODA detects stiiness, it switches to baclands diference formulae.When
operating in stif mode, LSO requires the system Jacobia%%) and ﬂgxﬂ) If the user has not
supplied these functions, LS®@Dnust be called using@lg=6 so that these quantities will be computed
using finite-diference approximationsOtherwise, LSOB should be called usinglg=5 so that the
analytic expressions for these quantities will be used.

The intgration precision of LSORis controlled by a relatie tlerance and an absolute tolerance.
These both delllt to Je—8 but can be specified iialg(3:4) respectiely (see description afimu-
late, form 1). The only non-standard aspect of the operation of L&®i{psimulate is that the intgra-
tion is restarted atvery mesh point,, due to discontinuities in the control splin@), or its dewatives, at
these points.

Gradient Ev aluation

In this section we discuss the computation of the gradients of the wbjenti constraint functions of
problemOCP with respect to the controls and free initial conditiofiese gradients are computed via
backwards intgration of the adjoint equations associated with each function.

Discrete-time Integrator. For the discrete-time intgratot the adjoint equations and gradients axemyi
by the folloving equations.For the objectve functionsyllq,, K = N, ..., 1

v 0g” é’, X T
Pk = hx(tk, Xk, Uk)T Pr+1 + 1% (tk, X, uk)T C PN+l = gngﬂ)
N+1

Section 5: Simulation Routines 41

simulate

.
Cafr(£,u)
G———0 = hy(ti, X, Uk) " Prea + 1 (ko Xk, U) T

0 du Ok
df*(¢u" _ 99" xe)” ;
d¢ o0& 0

For the endpoint constraintg[l] gg; N Jee K= N, ..., 1,

oa’ é:,X T
Pk = hy(ty, Xk1uk)T Pk+1 5 PN+1 = g(aNﬂ)
XN+1

g (¢, xne) D

. X
MD = Nyt Xk Uk) T Pret
0 du O

dg’ (£, Xn+1)" _ 09" (£, Xn+1)" N
d¢ 0
For the trajectory constraints(I] g;;, evaluated at the discrete-time indéll {1,...,N+1},

P1 -

Pk = Nyt Xio Uk) Prer s K=1=1,...,1; py = 1%, x,u)'

0 T —
T hy(tk, Xk, U k=1,...1-1
Gy 0 =0 Ntaxew)' k=1
O O O 0 k=1+1,... N
O
di'(t;, xg, u)" _
dé - b
Runge-Kutta Integrators. For corvenience, we introduce the notation
uk,j =U(Tk,ij)’ k=1,...,N, j= 1,...r,

where
i =tk + Gl ,

and ¢ [0, 1] are parameters of the Rungetta intgration method.For RK1, RK2 and RK3y = s
wheres =1, 2, 3repespectiely andi; = j. Howeve, RK4 has a repeated control sampé[4, Sec.
2.4],we haer = 3,i; = 1,i, = 2andiz = 4.

The computation of the control gradients is a-step processFirst, the gradient of (£, u) with
respect to the control sampleﬁj, k=1,...N,j=1,...r,wherer is the number of control samples
per integration interal, and with respect tbis computed.Second, the gradient with respect to the spline
coeficients, oy, of u(t) is mmputed using the chain-rule as folig

df (¢,u) _ im@de

doy i=1j=1 dUi’j dak’

k=1,...N+p-1,

IMz

where p is the order of the spline representatidviost of the terms in the outer summation are zero
because the spline basis elementehacal support.The quantity

Section 5: Simulation Routines 42

simulate

dUi’j
day = o r k(7))
is easily determined from a recurrence relation for the B-spline[basis

Due to the special structure of the specific RK methods useihiwate there is a ery eficient
formula, discoered by Hagefl0] for computingdf/dy; ;. We have extended Hages' formula to deal
with the \arious constraints and the possibility of repeated control samples (see Chaptéo 2ebcribe
this formula, we use the notationfor=1,... N-1landj=1,... 5,

Acj = hy(oj Yiejs (i)'
By = hy(zk). Vi, Uz)"

- T
IXj j =15(7kjs Vi, js U(zk,) s
and

lug ; =10z Y UCmi)T
where, withay ; parameters of the Rungaita method,

-1)
Ykt = Xk s Y, = Xk + D Zl ajmh(Yim U(zkm)) » = 2,... 8.
m=

The quantitiegy ; are estimates of(z ;).

The gradients of the objeed and constraint functions with respect to the contrgls and the ini-
tial conditionsé are gven as follows. Inwhat follovs a1 ; =bj, dis = qk+1,0 and the standard adjoint
variables, py, are given by py = gy . For the objectie functions, we hae for vl q,, k = N,...,],

q _ 09" (&, Xn+1)"
N+1,0 aXN+1

S
Okj = Qke1,0+ Dk 2 las—j+1,s—m+l(Ak,mqk,m +IXkmer) » J=8-1,5-2,...,0
m=j+

v (¢, 1) 0
!u v |:| .
O—qy B :bjAKSBk,jqk,j"'lk,jD, i=1,...s,

o du O
dfv(g, u)T agv(é:v XN)T 0
= +di,
dg 0g
For the endpoint constraints, wevaafor v[I] g; N Qe K= N, ..., 1
: : 09" (¢, xn+1)"
Okj = Qks2,0+ D% 2 AsjsrsmiaPumlm,] = $—1,8-2,...,0; Qns10= a—Nﬂ :
m=j+1 XN+1

T
Etjg" &, + O
0 (XN 1)|:|

=b;ABy Ok, 1=1,...8
0 du D(,j

Section 5: Simulation Routines 43

simulate

dg'(¢, XN+1)T _ agv(‘f,XN+1)T +
dé 0&

For the trajectory constraints(L] g;;, evaluated at the the discrete-time imdel] {1,...,N+1},

aP = 1t %, u(zy o))"

qs

S
Okj = Ake1,0+ D 2 AsjrrsmaPAmikm, K=1-1,..,1, j=s-1,5-2,...,0;

m=j+1

T biAyBy i O i k=1,...1-1, j=1,...s
CHIY (ty, Xy, U(ty)) C)Pk k]
O (k’dﬁ’ (k))D = O la(te, X, u(zyj)) k=15 j=0if <N,dsej=s
O Ck, B 0 otherwise

dI"(ty, 3, u(t))" _ o
dz qsi -

For method RK4, we hae the special situation thaf , = 7y 3 for all k becausec, = c3 = 1/2.
Hence, there is a repeated control samplg; = u(zy) = u(zx3). Thus, for ary function f, the
derivatives with respect tauy ;, Uy » anduy 3 are gven by the expressions,

df _ [t O df _Cof0 CdfO df _ [O
duy 1 DduD(J’ duy » EpuEkz [pqu duy 3 [fjuDk’4

Variable Step-Size Integrator (LSODA). For the \ariable step-size ingeator LSODA, the adjoint

equations and gradients arevagi by the equations belo which require knwledge of x(t) for all
Nknotst1,N+1

tt [a,b]. Asin[11], x(t) is dored at the internal knotty + —— A} 29" during the forvard
knots ’

system intgration. By default, ng,os= 1, lut the user can specifyng,s=1 by setting

ialg(2) = nkots (Se€ description ofimulate, form 1). Then, during the computation of the adjoints

and gradientsx(t) is determined by duating the quintic* Hermite polynomial which interpolates
(t, x(t), x(t)) at the nearest three internal knots within the current time aitdty, t,.¢]. Usually
Nnots = 1 IS quite suficient.

We row gve the formulae for the adjoints and the gradieritss important to note that, unkkthe
fixed step-size ingrators, the gradients produced by LSO&e not &act. Ratherthey are numerical
approximations to the continuous-time gradients for the original optimal control probleenaccurag
of the gradients is dcted by the intgration tolerance and the number of internal knots used to stbre v
ues ofx(t). Undernormal circumstances, the gradients will be less accurate than theicie toler
ance. ér the objectie functions vl q,,

Y“The order of the Hermite polynomial can be changed by setting the defingdol ORDER in the code adamsI.the trajectories are
not at least fig time differentiable between breakpoints, then it may be helpful to reduce the ORDER of the Hermite polynomials and increase

Nknots

Section 5: Simulation Routines 44

simulate

v T
p=—(he(t,x,u)" p+1%t x,u)"), tM[ab] ; pb)= ‘w(ai(xb()b))

.
Cufv (e, u)d b
#D = J' (hu(t, X, u)" p(t) + 115G, X, u) ey, pk()dt, k=1,... N+p-1
| k O a

df*(¢,u)" _ ag" (¢, x(b))"
dé 0g

For the endpoint constraintglll gg N Jee

+p(a) .

. ag’ (&, x(b)T
b=yt xu)Tp, tO[ab] ; p(b):ggi;g”

T
Ldg" (£, u) U b
SO = x0T PO o O, k=1 N1
D dak D a N/
dg'(¢,u)" _ 9g" (&, x(b)"
dg 0
For the trajectory constraints[T] g, evaluated at timet = t), [(J {1,... ,N+1},

p=-hy(t,x,u)'p, tM[at] ; pt) =15, xt) ut)’

+p(a) .

T
Calv (ty, %, u(t,))d t
DWD = J'l hu(t, X, u)" p(t) ¢y, ,k(®)dt, k=1,...N+p-1
O k N a

dI¥(t;, x, ut))"
e =p(a) -

The numerical eduation of the intgrals in these xpressions is ganized in such a ay that thg are
computed during the baclards intgration of p(t). Also, the computation taeds adantage of thedct
that the intgrands are zero outside the local support of the spline basis elementé).

Section 5: Simulation Routines 45

check_deriv

check_deriv

Purpose

This function preides a check for the accuyaof the usetsupplied desiatives Dh, DI andDg by com-
paring these functions to destive goproximations obtained by applying faavd or central finite-
differences to the corresponding usapplied functiorh, | andg.

Calling Syntax

[errorA,errorB,max_error] = check_deriv(x,u,t,{params},{index},
{central},{DISP})

Description

The inputsx(D R", ulll R™ andtI0 R give the nominal point about which towauate the deviatives
hy(t, X, u), hy(t, x, u), 1%(t, X, u), 15 (t, x,u), g(t, x,u) and gj(t, X, u). If there are system parameters (see
description oinit in 83), the must supplied by the inpyarams . If specified,index indicates the dis-
crete-time inde for whicht(index) <t <t(index+1) . This is only needed if one of the user
supplied system functions uses the discrete-timeipdssed imeq|[3]

The error in each desdtive is estimated as the ddrence between the usarpplied desiative and
its finite-difference approximationFor a generic functionf (x), this error is computed, witg thei-th
unit vector ands; a salar as

E= f(x) - f(x+ge) df(x) e
i dx

if forward diferences are used, or
_ f(x-9d&)-f(x+5e) df(x)
- 20, dx

if central diferences are usedThe perturbation size i§; = g,ﬂgchmax{l, ki|}. Central diference

approximations are selected by setting the optiormalraentcentral to a non-zero alue. Otherwise,
forward diference approximations will be used.

E

ei ’

The first term in the &ylor expansion ofE with respect tas; is of order isO(s2) for central difer-
ences an®(g;) for forward diferences. Moreletails can be found [@2, Sec. 4.1.1].Thus, it is some-
times useful to perform both foasd and central diérence approximations to decide whether gdatif-
ference between the degfive and its finite-diference approximations is due merely a result of scaling or
if it is actually due to an error in the implementation of the-gapplied dewiative. If the devative is
correct therk should decrease substantially when centrééihces are used.

If DISP=0, only the maximum error is displayed.

The outputerrorA anderrorB return the errors foh,(t, x, u) and h,(t, x, u) respectiely. The
outputmax_error is the maximum error detected for all of the datives.

Section 5: Simulation Routines 46

check_deriv

Example

The folloving example compares the output frooheck derv using forvard and central finite-
differences. Thelerivatives gopear to be correct since the errors are much smaller when cereal dif
ences are usedirst forward diferences are used, then centrafedénces.

>> check_deriv([-5;-5],0,0);

System matrices:
Errorin h_x =
1.0e-04 *
0 -0.0000
-0.0000 -0.6358

Errorinh_u =
1.0e-10*
0
0.9421
For function 1:
Errorin|_x=
1.0e-04 *

-0.3028 0
Errorin_u = 6.0553e-06

For function 1:
Errorin g_x0 = 0 0

Erroring_xf= 0 0

Maximum error reported is 6.35823e-05.

>> check_deriv([-5;-5],0,0,[],0,1);

System matrices:
Errorinh_x =
1.0e-10 *
0 -0.0578
-0.2355 -0.3833

Errorin h_u =
1.0e-10 *
0
0.9421
For function 1:
Errorinl x =
1.0e-10*

0.5782 0
Errorinl_u = 0

For function 1:
Errorin g_x0 = 0 0

Error in g_xf = 0 0

Maximum error reported is 9.42135e-11.

Section 5: Simulation Routines 47

check_grad

check_grad

Purpose

This function checks the accuyaeof gradients of the objeste and constraint functions, with respect to
controls and initial conditions, as computedsimulate, forms 1 and 2lt also provides a means to indi-
rectly check the alidity of the usessupplied deriative Dh, DI andDg.

Calling Syntax

max_error = check_grad(i,j,k,x0,u,t,ialg,{params}{central},
{DISP})

Description
The inputx0, u, t andialg specify the inputs to the nominal simulatiemulate(1,x0,u,t,ialg,0)prior

to the computation of the gradient§he gradients are tested at the discrete-time indices as specified in
the following table:

Index Purpose

[Spline codficient controlu that will be perturbedIf i=0 , the
gradients with respect towill not be checkd.

i Index of initial state ectot £, that will be perturbedlf j=0 , the
gradients with respect to tifewill not be checkd.
k For each trajectory constraints,indicates the discrete-time in-

dex, starting withk=1, a which the trajectory constraints will by
evduated. Ifk=0, the trajectory constraint gradients will not b
checled.

D D

The finite-diference computations are the same as describetidok deri.

If there are system parameters (see descriptiominf 8 3), these must be \n by the input
params . Central diference approximations will be used if a non-zeatue forcentral is specified,;
otherwise forard diferences will be usedlf DISP=0, only the maximum error is displayed-his is
particularly useful ifcheck derv is used in a loop on gnof the indicesij,k . The output
max_error is the maximum error detected in the gradients.

Example
The folloving example checks the tenth component of the control gradient and the second component of
initial condition gradient as computed by RK2 using centréédihces. Théntegration is performed on

the time interal t[IJ [0, 2. 5] with N =50 intenals. Thegradients arewluated for the second order
spline controlu(t) = 1 forallt (i.e., o = 1,k =1,... N+1).

Section 5: Simulation Routines 48

>>t =[0:2.5/50:2.5];

>>u =ones(1,51);

>> x0 = [-5;-5];

>> check_grad(10,2,0,x0,u,t,2,[],1);

Using perturbation size of 6.05545e-06

Evaluating function 1.
error u = 1.84329e-09
error_x0 = -4.88427e-11
Relative error in control gradient = 2.52821e-07%
Gradient OK

Relative error in X0 gradient = 1.14842e-09%
Gradient OK

Evaluating endpoint constraint 1.

error u = -5.46737e-11

error_x0 = -5.98271e-12

Relative error in control gradient = 6.04337e-08%
Gradient OK

Relative error in x0 gradient = 1.87846e-09%
Gradient OK
Maximum error reported is 1.84329e-09.

Section 5: Simulation Routines

check_grad

49

eval_fnc

eval_fnc

Purpose

This function preides a cowenient interfice tosimulate (form 2), for computing function and gradient
values. Asystem simulation must alreadyaaeen performed for this function toovk.

Calling Syntax

[f,du,dx0,p] = eval_fnc(type,num,k)

Description of Inputs

type

num

A string that specifies the type of function to lveleated. Thechoices are

‘obj’ Objective function
‘ei’ Endpoint inequality constraint
‘e’ Endpoint equality constraint
‘traj’ Trajectory constraint

Specifies for the function of the type specified type is to be galuated.

For trajectory constraints onlySpecifies the indefor the timepgy, in the current intgration
mesh at which tovaluate the trajectory constraintf k is a \ector the trajectory constraint
will be evaluated at the times specified by each mesh poinkiile.

Description of Outputs

du
dx0

p

Examples

The function alue.
The gradient with repect ton Not computed for trajectory constraintdriflex is a \ector

The denvative d the function with respect to initial conditions, Not computed for trajec-
tory constraints ifndex is a \ectot

The adjoint trajectoryNot computed for trajectory constraintsriflex is a \ector

The follonving examples assume that a simulation has already been performed on a system that has at least
two endpoint equality constraints and a trajectory constraiiie first call toevd_fnc evduates the sec-
ond endpoint equality constraint.

Section 5: Simulation Routines 50

eval_fnc

>> f=zeval_fnc('ee’,2)
f =

0.2424

Since equality constraints shouldaleiate to zero, this constraint is violatethis net call evaluates the
first trajectory constraint at the timgs k = 5, . .., 15jn the current intgration mesh.

>> eval_fnc(traj’,1,5:15)
ans =
Columns 1 through 7
-1.0182 -1.0222 -1.0258 -1.0288 -1.0311 -1.0327 -1.0338
Columns 8 through 11

-1.0335 -1.0318 -1.0295 -1.0265

Since inequality constraints are satisfied if less than or equal to zero, this trajectory constraint is satisfied
at these specified points.

Section 5: Simulation Routines 51

6. OPTIMIZATION PROGRAMS

This section describes the suite of optimization programs that can be usecctwasolys cases of the
optimal control problenOCP. These programs seek local minimizers to the discretized problé.
most general program i#ots which corverts OCP into a mathematical program which is smvusing
standard nonlinear programming techniquBssides being able to selthe lagest class of optimal con-
trol problems,riots is also the most ralst algorithm amongst the optimization programnailable in
RIOTS_95. Havever, it can only handle medium size problemEhe size of a problem, the number of
decision ariables, is primarily determined by the number of control inputs and the discretizaton le
What is meant by medium size problems is discussed in the descriptiots of

The most restrictie rogram ispdmin which can sole gotimal control problems with constraints
consisting of only simple bounds dnandu. State constraints are not alled. Thealgorithm used by
pdmin is the projected descent method describdd,ihap. 3]. Because of the fi€iengy of the pro-
jected descent methogdmin can sole large problems.

Problems that heg, in addition to simple bounds om and &, endpoint equality constraints can be
solved by aug_lagmg. The algorithm is a multiplier method which relies uppdmin to sohe a
sequence of problems with only simple bound constraiftigs program preides a goodxample of hav
the toolbox style of RIDS_95 can be used to create a complgorithm from a simpler oneCurrently
the implementation ofug_lagmg is fairly nave and has a great deal of room left for impement.
Also, it would be relatiely straightforvard to add an aet <t stratgy toaug_lagmg in order to allev it
to handle inequality constraints.

Finally, the programouter is an eperimental outer loop which repeatedly cailsts to sohe a
sequence of increasingly accurate discretizations (obtained by caiksrioute) of OCP in order to €fi-
ciently compute the optimal control to a specified acgurac

Choice of Integration and Spline Or ders.

Each of these optimization programs requires the user to select gnatioie routine and the order of the
spline representation for the control§here are seral factors iwolved in these selectionsSome of
these &ctors are discussed beland summarized in theable O2 that follas. Consulf4, Chap 4.2] for
a more in-depth discussion.

Fixed step-size integration. The first consideration is that, for each of thedistep-size Rungetitta
methods, there is a limit to Wwamuch accurag can be obtained in the control solutions at certain discrete
time points. The accurag |uy" - U'|} of the control splines can not be greater than the solutions at these
time points. The order of the accuramf spline solutions with respect to the discretizationeldor
unconstained problems is gien in the followving table. The quantityA used in this table is defined as

A =max ty k+1 —tn k. The third column is a reminder of the spline orders that areedidysimulate

for each RK method.

Section 6: Optimization Programs 52

Table O1

RK Method | Order of Accurag Allowable Spline Orders
1 o(AY) 1
2 0(A?) 2
3 0(A?) 2
4 o(A%) 2,34

While it is possible with some optimal control problems to aehlggher order accuracies, this is a non-
generic situation.The order of spline representation should therefore xmes the accuracies listed in
the second column of this tabl&hus, for RK4, gen though cubic splines are alled there is usually no
reason to use higher than quadratic splipes @).

The orders listed in the ab®table are usually only achied for unconstrained problems:or prob-
lems with control constraints it is typically impossible to aehiketter than first order accusacThis is
even true if the discontinuities in the optimal control are \wna priori since the locations of these dis-
continuities will not coincide with the discontinuities of the discretized problésproblems with state
constraints, the issue is more complicatedgeneral, we recommend using second order splinesie
for Euler's method) for problems with control and/or trajectory constraiitgen if first order accurgas
all that can be achied, there is almost naxga work involved in using second order splinesurther
more, second order splines will oftevgilomenhat better results than first order splineandf the accu-
racy is asymptotically limited to first order

A second consideration is that theemll solution error is due to both the igtation error and the
error caused by approximating an infinite dimensional function, the optimal control, with a finite dimen-
sional spline.Because of the interaction of thesetswurces of error and thadt that the accurgof the
spline representations is limited to the abdable, impreing the intgration accuracby using a higher
order method does not necessarily imply that the acgufate solution to the approximating problem
will improve. Howeve, even if the spline accurgcis limited to first orderit is dten the case that the
integration errorwhich is of ordeitO(AS), wheres is the order of the RK method, still has a significantly
greater dkect on the werall error than the spline error (especially aw Idiscretization lgels). Thisis
partly due to thedct that errors in the control are igtated out by the system dynamiddus, it is often
advantageous to use higherder intgration methodswen though the solution error is asymptotically
limited to first order by the spline approximation error

The importance of the RK orddn terms of reducing theverall amount of computational avk
required to achiee a @rtain accurag depends on the optimization program being udedch iterations
of riots requires the solution of one or more dense quadratic progfam.dimension of these quadratic
programs is equal to the number of decision parameters (whiofiNs- p — 1) plus the number of free
initial conditions). Because the ark required to soly a cense quadratic program goes up at least cubi-
cally with the number of decisiorakiables, at a certain discretizatiomdemost of the wrk at each itera-
tion will be spent solving the quadratic prograifhus, it is usually best to use the fourth order RK
method to achige & much accurag as possible for a gien discretization lgel. An exception to this rule
occurs when problef®@CP includes trajectory constraint®ecause a separate gradient calculation is per
formed at each mesh point for each trajectory constraint, the amouatloinereases significantly as the
integration order is increasedlhus, it may be beneficial to use a RK3 wereRK2 depending on the
problem.

On the other hand, for the optimization prograpwsnin and aug_lagmg (which is based on
pdmin) the amount of wrk required to sok the discretized problem is roughly linear in the number of

Section 6: Optimization Programs 53

decision ariables which is basically proportional to the discretizatioel I&l. The amount of wark
required to intgrate the dierential equations is linearly proportional ks where s the order of the
Runge-Kitta method. Since the intgration error is proportional to/IN?, if not for the error for the
spline approximation it wuld alvays be best to use RK4lowever, because there is error from the finite
dimensional spline representation, it does notgd pay to use the highest order RK methtidroughly
speaking, the error from the control representation carnésbto the werall error in the numerical solu-
tion to lager extent than the inggration error (note that the spline error and thegiratiion error are in dif-
ferent units) then it is asteful to use a higher order RK methdthis usually happens only at high dis-
cretization leels.

The relatve dfect of the spline errorersus the inggration error depends on the nature of the system
dynamics and the smoothness of the optimal contdoifortunately this is hard to predict in adnce.
But a sense of the balance of these errors can be obtained by solving, if possible, the problerdist a lo
cretization leel and viewing the solution usingp_plot and usingsimulate (form 7) orest_errors to
obtain an estimate of the igt@tion error

There is a third consideration for selecting thegrdadon order For some problems with particu-
larly nonlinear dynamics, in may not be possiblegraée the dierential equation if the discretization
level is too small. In these cases, the minimum discretizatiorgllaeeded to produce a solution is small-
est when using RK4For some problems, it may not be possible to ashian accurate solution of the
differential equation at grreasonable discretizationvi#. For these problems, thawnable step-size inte-
gration method, discussedxtewill have o be used.

Regadless of the inigration method used, higher order splings>(2) should not be used unless
the optimal control is sfi€iently smooth. Of course, the optimal control is not kmo in adwanced. Gen-
erally, though, when solving control and/or trajectory constrained problems, second order splines should
be used (ecept with Eulers method which can only use first order splines) as per the discussiea abo
For other problems being ingeated with RK4, it may be adatageous to use quadratic splines.

The following table proides a set of basic guidelines for the selection of thgratien method and
the spline order for solving dérent classes of problem$hese choices may not be ideal foy apecific
problem lut they are generally acceptable for most problems.

Table O2
type of problem optimization program| K order | spline order
(ialg) (p)
no control nor trajectory con- pdmin/aug_lagmg 4 (N small) 3(N small)
straints - 2 (N large) 2(N large)
riots 4 3
: pdmin/aug_lagmg 4 (N small
control constraints - 2 (N large) 2
riots 4
trajectory constraints riots 212 2

Section 6: Optimization Programs

54

Variable step-size integration. From the point of vie of integrating diferential equations, it is much
more eficient to use aariable step-size ingeation routine than a fd step-size methoddowever, this

is usually not the case when solving optimal control probleftwre are three basic reasons for this.
First, the @erall solution accuraccannot &ceed the accurgavith which splines can approximate the
optimal control. Thus, it is quite concedble that a great deal ofaosk will be spent to achie a vey
accurate intgration, which is often necessary to ensure successful line searchésistefort will be
wasted on a relately inaccurate solution.Second, the solution of the discretized problem can easily
involve hundreds of simulationsThe intgyration accuracduring most of the simulations will kia vey

little affect on the accurgcof the final solution. Therefore, it is usually much morefiefent to sole a
sequence of discretized problems, each with a more accuragmatiie mesh, using agt, fixed step-size
integration method.Third, the gradients produced for thariable step-size method are approximations to
the actual, continuous-time gradients for the original prolflgp#®; they are not e&act gradients for the
discretized problemsThus, the solution of the discretized problem will usually require more iterations
and will be less accurate (relatio the actual solution of the discretized problem) when usingdhie v
able step-size method than when using one of tleel ftep-size inggation routines.Again, otherwise
useless intgration accuracis required to produce didiently accurate gradient approximations.

There are, hwever, dtuations in which it is best to use thariable step-size infggation method.
The first situation is when the system dynamics arg difficult to integrate. Inthis case, or another
case in which the the irgeation error greatly>@eeds the spline approximation errioiis nore eficient
to use the ariable step-size methodin some cases, the ig@tion has to be performed using tlaeiable
step-size methodThis can occur if the system is described by differential equations or if the system
contains highly unstable dynamics.

Another situation in which it can be ahtageous to use thanable step-size ingeation method is
if the location of discontinuities in the optimal control, or discontinuities in theaterss o the optimal
control, are knan a priori. In this case, it may be possible to increase the solution agdoygstacing
breakpoints in the discretization mesh where these discontinuities occur and then using a spline of order
one greater than theveall smoothness of the optimal contrbl The location of the discontinuity for the
discretized problem will beery close to the discontinuity in the optimal control if the gra¢ion toler
ance is small and the optimal control is well-approximated by the spliag faom the discontinuity
Hence, the werall accurag will not be limited by the discontinuity

The \ariable step-size ingeation routine can use first, second, third, or fourth order splifes.
unconstrained problems, or problem with endpoint constraints, it is best to use fourth order splines so that
the spline approximation error is as small as possibte.problems with control and/or trajectory con-
straints, first or second order splines are recommended.

Coordinate Transf ormation

All of the optimization programs in RIC5_95 sole finite-dimensional approximations @CP obtained
by the discretization procedure described in the introduction oA88itionally, a change of basis is per
formed for the spline control subspacd$ie nev basis is orthonormalThis change of basis is accom-
plished by computing the matrM , with the property that for gntwo linesu(l)l and v([)) with coefi-
cientsa and g,

2Sometimes a higherder method must be used toyide a reasonable solution to the systerfedintial equations.

13A spline of higher order wuld be too smooth since RTS_95 currently does not aflosplines with repeated interior knots.

Section 6: Optimization Programs 55

(U1V>L2: (aMa1ﬁ>y
(recall thatae and g are rav vectors. Thesplines codicients in the transformed basis araepi by
&' = aM¥2andg = AMY2. In the nev coordinates,

(v, = (4. 5) .

In words, theL,-inner product of antwo lines is equal to the Euclidean inner product of theirfcoef
cients in the ng basis. Thamatrix M, is referred to as theansform matrixand the change of basis is
referred to as theoordinate tiansformation

By performing this transformation, the standard irpreduct of decision ariables (spline coif
cients) used by &the-shelf programs that s@vmathematical programs is equal to the function space
inner product of the corresponding splinéddso, because of the orthonormality of thewrtasis, the con-
ditioning of the discretized problems is n@nse than the conditioning of the original optimal control
problemOCP. In practice, this leads to solutions of the discretized problems that are more accurate and
that are obtained in feer iterations than without the coordinate transformati@lso, ary termination
criteria specified with an inner product become independent of the discretizatldn the nev basis.

In effect, the coordinate transformation pides a natural column scaling for eackvraof control
coeficients. Itis recommended that, if possible, the user attempt to specify units for the control inputs so
that the control solutions ta magnitude of order oneChoosing the control units in thisay s, in efect,

a row-wise scaling of the control inputs.

One dravback to this coordinate transformation is that for splines of ordeatd higher the matrix
M2 is dense.A diagonal matrix wuld be preferable for twreasons. FirsgomputingM ;Y2 is com-
putationally intensie for lage N. Second, there wuld be much less avk involved in transforming
between bases: each time avriterate is produced by the mathematical programming acdtvit has to
be un-transformed to the original basfdso, every gradient computation wolves an imerse transforma-
tion. Third,simple control bounds are camted into general linear constraints by the coordinate transfor
mation. Thispoint is discussed we

Control bounds under the coordinate transérmation. Simple bounds on the spline cheknts
takes the forma, < o < b, k=1,.. N+ p—-1. If a andby, are in fict constantsa andb, then for all
t, a< u(t) £ b. Now, under the coordinate transformation, simple bounds of this form become

(al,...,0{N+p_1)S(J}|M;1/2S(b1,...,bN+p_1).

Thus, because of the coordinate transformation, the simple bounds segtezbinto general linear
bounds. Sincthis is undesirable from anfigiency point of view, RIOTS_95 instead replaces the bounds
with

(al ,...,0{N+p_l)My2S (P < (b]_ !"'1bN+p—l)Mi}/z.
For first order splines (piesése constant), these bounds are eaient to the actual bounds sinbg-? is

diagonal. Br higher order splines, these bounds are notvaleut. The are, havever, goproximately
correct since the entries of the matuly, fall off rapidly to zero way from the diagonal.

It turns out that the problems enumeratedvab@n be &oided when using second order splines
(piecavise linear) which are, in gncase, the recommended splines for solving problems with control
bounds. Insteadf usingM, in the coordinate transformation, the diagonal matrix

Section 6: Optimization Programs 56

WAV} 0
0 M+hy 0
e a
M=0 2 O,
O O
0 An-1 + Dy 0
O 2 O
a AN

with Ay =ty k+1 —tnk, IS used. Thistransformation matrix is demd in[4, Sec. 2.7] and retains the
important attrilites of the transformationvgn by M. Inriots andpdmin, M is used for the coordinate
transformation, instead d¥1,, when second order splines are usedi)ifproblem OCP has control
bounds,(ii) RK2 is being used as the igtation method, ofiii) N > 300. Thelatter case is empjed
because the time it tak to compute the transform becomeseasie whenN is lage. Whenp > 2, the
transformation is skipped altogethe(i)f N > 300 or(ii) LSODA is keing used on a problem with con-

trol bounds*.

“Recall from Hble S3 (p. 36) that splines of order greater than 2 can only be used with RK4 andl.LSOD

Section 6: Optimization Programs 57

Description of the Optimization Pr ograms

The first six inputs are the same for all of the optimization programsatédisted in the follaing table.
Default values for ectors apply to each component of thatter Specifying[] for an input causes that
input to be set to its dafilt value. Inthe following, N is the discretization el and p is the order of the
control splines.

Table O3
Input Raws Columns Description
x0 n 1,2o0r4 X0=[x0,{fixed,{x0Omin,xOmax}}] where
x0 is the nominal &lue of the initial staté.
fixed For eachi such thafixed(i)=0 , the cor

responding initial statealueé' is treated as a
free decision ariable. Defult: 1

x0min Specifies lover bound for each free initial
condition¢'. Default: —oo

xO0max Specifies upper bound for each free initial
condition&'. Default: co

uo m N+p-1 Initial guess for the spline cdiglients of the contrall.
t 1 N+1 The inteyration mesh points/spline breakpoints.
Umin m N+p-1ol | Lower bounds on the spline céefents foru. If Umin

is specified as a single column, idues will apply as a
lower bound on all of the spline céiefents. Deéult:

- 00

Umax m N+p—-1ol | Upperbounds on the spline cie@ents foru. If Umax
is specified as a single column, ilwes will apply as
an upper bound on all of the spline dménts. Deéult:
00

params p 1 Provides the system parameters if required.

The first two outputs are the same for all of the optimization programsy; dhe listed in the follwing
table:

Table O4
Output Ravs Columns Description
u m N+p-1 The optimal control solution.
X n N+1 The optimal state trajectory solution.

Section 6: Optimization Programs 58

aug_lagrng

aug_lagrng

Purpose

This function usepdmin as an inner loop for an augmented Lagrangian algorithm thassoptimal
control problem with, in addition to simple bounds$€andu, endpoint equality constraintsOnly one
objective function is alleved.

The user is @ed to check thealidity of the usessupplied dekiatives with the utility program
check_derv before attempting to ugeimin.

Calling Syntax

[u,x,flambda,l_i] = aug_lagrng([x0,{fixed,{xOmin,xOmax}}],u0,t,
Umin,Umax,params,N_inner,N_outer,
ialg,{method} {[tol1,tol2]},{Disp})

Description of the Inputs

The first six inputs are described iable O3.

N_inner Maximum number of iterations for each inner loop capdmin.

N_outer Maximum number of outer iterations.

ialg Specifies the intgration algorithm used ksimulate.

method Specifies the method for computing descent directions in the unconstrained subspace.
The choices arexplained in the description @idmin. Default:'vm’ .

tol1,tol2 Optimality tolerancesDefault: [X2, £¥2., 1. Theouter loop terminates if

e

0t) - qzelzvmgzem)n < toll (L+[f())

v =

and
max Bee(m)| < tol2
Disp Passed on t@dmin to control amount of displayed outpudefault: O.

Description of the Outputs

The first two outputs are described irallle O4.

f The objectie value at the obtained solution.

I Index set of elements ofy(:) ; £] that are not at their bounds.

lambda Vector of Lagrange multipliers associated with the endpoint equality constraints.

Section 6: Optimization Programs 59

aug_lagrng
Description of the Algorithm

This program callpdmin to minimize a sequence of augmented Lagrangian functions of the form
Qee v 1 Yee v 2
Leatm =1 - 2 4,0edn) + 2 2 C.0edm)
v=1 v=1

subject to simple bounds dhandu. The walue of the augmented Lagrangian and its gradient are sup-
plied topdmin by a_lagmg_fncvia extension 1 (see description mdmin).

The \alues of the Lagrange multiplier estimates v = 1, ... Jee, &€ determined in one of tw
ways depending on the setting of the interraiableMETHOIN aug_lagrng.minitially 4, = 0.

Multiplier Update Method 1. This method adjusts the multipliers at the end of each iteration of
pdmin by solving the least-squares problem

qee
—_ H _ v 2 .
A= min 10F6) = 2 A Dgedmli

where the norm is ta&k only on the uncstrained subspace of decisgwialvies which is indicated by the
index setl_i . This update is performed bgultiplier_update which is called bypdmin via extension

2. If update method 1 is used, the tolerance requested for the inner loop is decreasetiopyatén on

each outer iteration starting fromMpteN-outer } ;12 yntil the tolerance ist/2,,

Multiplier Update Method 2. This method is the standardhethod of multipliers’which sohes the
inner loop completely and then uses the first order multiplier update

Ay « lv_cvgge(n) , Vv,

where

I, = { V(10 Qee | 196e(m)] < %1 |glée(77previ0us)| or Pee(n)|<tol2 } .

If update method 2 is used, the tolerance requested for the inner loagaliatfiX2.,,

Penalty Update. The initial values for the constraint violation penalties eye= 1, v = 1,... Qee It
may be helpful to use Iger initial values for highly nonlinear problem3he penalties are updated at the
end of each outer iteration according to the rule

Cv — 10C1, ,\‘/V[Hv,
wherel, is as defined alve.

Note that this algorithm is implemented mainly to demonstratextemgble features gfdmin and is
missing features li (i) constraint scalingjii) an actve £t method for handling inequality endpoint con-
straints,(iii) a mechanism for decreasing constraint violation penalties when possible and, most impor
tantly, (iv) an automatic mechanism for setting the termination tolerance for each mawhiio.

Notes:

1. Onreturn from a call tcaug_lagmg, the variableopt program will be defined in the Matlab
workspace. lwill contain the strindaug_lagrng’

See Also: pdmin, a lagrng_fnc.m, multiplier_update.m.

Section 6: Optimization Programs 60

outer

outer

Purpose

This program callsiots to sohe problems defined on a sequence ofedlént intgration meshes, each of
which result in a more accurate approximatio®@P than the preious mesh.The solution obtained for
one mesh is used as the starting guess for thtamesh.

The user is @ed to check thealidity of the usessupplied dekiatives with the utility program
check_derv before attempting to ugeimin.

Calling Syntax

[new_t,u,x,J,G,E] = outer([x0,{fixed,{xOmin,xOmax}}],u0,t,
Umin,Umax,params,N_inner,[N_outer,{max_N}]
ialg,{[tol1,tol2,tol3]},{strategy},{Disp})

Description of the Inputs

The first six inputs are described iable O3.

N_inner Maximum number of iterations for each inner loopiofs.

N_outer Maximum number of outer iterations.

max_N The maximum discretizationuel; outer will terminate if the discretization Vel
exceedamax_N Default: co

ialg Specifies the inggration algorithm used bsimulate.

toll,tol2,tol3 Optimality tolerancesThe outer loop terminates if

IBL@ < toll (L +[f()]) .
where|dL(7)|, is theH,-norm of the free portion dfiL(7),

v <
Jmax bedon)| < tol2

and
luy — U< 013 (1+ unlio)b

whereb is the nominal final timeThe de&ult values for these tolerancesscfors

1/3 1/4 1/6
are E‘:mach’ €mach €machl-

strategy Passed onto distribute to select the mesh redistuiiion stratgy.
Default = 3.
Disp Passed on taiots to control amount of displayed outpudefault = 1.

Section 6: Optimization Programs 61

outer

Description of the Outputs

The first two outputs are described iraflle O4.
new_t The final intgration mesh obtained from the final mesh redistidin.

u The optimal control solution defined on the final mestv_t .

X The optimal trajectory solution.

J A row vector whosé-th component is thealue of the objecte function, computed using
LSODA, after thei-th call toriots.

G A row vector whoseé-th component is the sum of the constraint violations, computed using
LSODA, after thei-th call toriots.

E A row vector whose-th component is an estimate [gfy| - 77* I, after the (+ 1)-th iteration.

Withn = (u,£), Inllk, is defined by
2

O b)
2l = Ciig Tl +I lu(®lzdto
0 a 0

Description of Algorithm

outer is an outer loop foriots. During each iteratiorrjots is called to solg the discretized problem on
the current mesh starting from the solution of theviptes call toriots interpolated onto the memesh.
After riots returns a solutionest_errors and control_error are called to prnade estimates of certain
guantities that are used to determine whethaer should terminate or if it should refine the mesh.
necessarythe mesh is refined bgistrib ute, with FAC=10, according tostrategy except follonving
the first iteration.After the first iteration, the mesh isnglys doubled.

After each iteration, the folleing information is displayed: thel,-norm of the free portion of the
gradient of the Lagrangian, the sum of constraint errors, olgefatiction \alue, and intgration error of
the intgration algorithmialg at the current solution.All of these quantities are computed by
est_errors. The first three alues are estimates obtained using L&QMth a tolerance set to about one
thousandth of the inggation error estimateThe control solution is plotted after each iteration (although
the time axis is not scaled correctly for free final time problems).

Additionally, following all kut the first iteration, the change in the control solution from thequre
iteration and an estimate of the current solution gh@f —77° I, are display

Notes:

1. If solutions &hibit rapid oscillations it may be helpful to add a penalty on the wiseedervative
variation of the control by setting th@arableVARIn outerm to a small posite value.

2. Thefactor by whichdistrib ute is requested to increase the gregtion accurac after each iteration
can be changed by setting thaiableFACin outerm.

3. Anexample usinguter is given in Session 4 (83).

See Also: riots, distrib ute, est_errors, control_error.

Section 6: Optimization Programs 62

pdmin

pdmin

Purpose

This is an optimization method based on the projected descent rf@thtidis highly eficient kut does
not solhe problems with general constraints or more than one obgeftthction.

The user is @ed to check thealidity of the usessupplied dekiatives with the utility program
check_deri before attempting to ugsmin.

Calling Syntax

[u,x,d,inform,|_a,l_i,M] = pdmin([x0,{fixed,{x0min,x0Omax}}],u0.t,
Umin,Umax,params,[miter,{tol}],
ialg,{method} {[k;{scale}]},{Disp})

Description of Inputs

The first six inputs are described iable O3. The remainder are described here.
miter The maximum number of iterations alled.
tol Specifies the tolerance for the fallmg stopping criteria

loklh, /11l <tol #3(L + [f(m)]) |

f(u) = f(ug-1) < 20001 (1 + [f(u)l)

1/2
Ui = Uialloo < tol M2(1 + Uy llo) ,
X, =0 VA,

wheregy is thek-th component of the destive d f([Jin transformed coordinatel, is set

of inactive ound indices andy is set of actie bound indices.Default: e¥2.,,

ialg Specifies the ingration algorithm used bsimulate.

method A string that specifies the method for computing descent directions in the unconstrained sub-
space. Thehoices are:

limited memory quasi-Neton (L-BFGS)
'steepest’ steepest descent
‘conjgr’ Polak-Ribiee conjugte gradient method
'vm limited memory quasi-Ngton (L-BFGS)

The defwult method is the L-BFGS method.

k This value is used to determine a perturbation with which to compute an initial scaling for the
objective function. Typically, k is supplied from a pxéous call topdmin or not at all.

scale This value is used to determine a perturbation with which to compute an initial function scal-
ing. Typically, scale is supplied from a prgous call topdmin or not at all.

Section 6: Optimization Programs 63

pdmin

Disp Disp = 0,1,2 controls the amount of displayed output with 0 being minimal output and 2
being full output. Default: 2.

Description of Outputs

The first two outputs are described iraflle O4.

J A row vector whosei(+ 1)-th component is thealue of the objecte function at the end of
the i-th iteration. The last component af is the walue of the objecte function at the
obtained solution.

|_a Index set of elements of(:) ; £] that are actiely constrained by bounds.
| Index set of elements of(:) ; £] that are not constrained by bounds.

inform This is a ector with four components:
inform(1) Reason for termination (seexta¢able).
inform(2) Function space norm of the free portiori.of(r), 7 = (u, £).
inform(3) Final step-siz& = log A/log g where is the Armijo step-
length ands = 3/5.
inform(4) The \alue of the objecte function scaling.

The possible termination reasons are:

inform(1) Cause of &rmination.
-1 Simulationproduced NaN or Inf.
0 Normal termination tests satisfied.

Completed maximum number of iterations.
Search direction ector too small.

All variables at their bounds and going to stay that \
Gradient too small.

Sep-size too small.

User test satisified (user test returned 2).

<

OO WN P

Description of Displa yed Output

Depending on the setting @fisp , pdmin displays a certain amount of information at each iteration.
This information is displayed in column#n the first column is the number of iterations completegt ne
is the step-size} = ¥, with k shawn in parenthesis; neis |0 f(7)l,, which is the norm of the gradient
with respect to those decisioanables that are not at their boundsxtrie a four (three if there are no
upper or lever bounds) letter sequenceTd$ and F's where ar indicates that the corresponding termina-
tion test, described abeg is stisfied; nat is the \alue of the objectke function; and in the last column,
an asterix appears if the set of indices corresponding to constrainedles changed from the pigus
iteration.

Section 6: Optimization Programs 64

pdmin
Extensib le Features

Becausepdmin is designed to be callable by other optimization programs, it includes tkieresiens
that allav the user to customize its bef@. These gtensions are function calls that are made to user
supplied subroutines at certain points during each iterafidrey allow the user to(i) construct the
objective function and its gradient§j) specify termination criteria and perform computations at the end
of eachpdmin iteration, and(iii) add additional tests to the step-size selection procedime.use of the
first two of these gtensions is demonstrated in the progiung_lagmg.

Extension 1. If the global ariableUSER_FUNCTION_NAME defined in Matlals workspace and is
a gring containing the name of ahd m-file, pdmin will call that m-file, instead o§imulate, to evaluate
the system functions and gradienihis can be used to construct a composite function froeraedif-
ferent calls tssimulate. For instance, a penalty function can be formed toera constrained problem
into an unconstrained problenthe syntax for the user function is

[fO,x,grad_u,grad_x0] = USER_FUNCTION_NAME(x0,u,t,ialg,action)

where the input and outpuainables are the same as for callsitnulate. See a_lagrng_fnc.m for an
example.

Extension 2. If the global ariable USER_TEST NAMIS defined in Matlals workspace and is a
string containing the name of ald m-file, pdmin will call that m-file at the end of each iteratiomhe
syntax for the user function is

user_terminate = USER_TEST_NAME(fO,x,u,grad_u,grad_x0,l_i,free_x0)

wherel i is a column ector indaging all elements ofy(:); &] that are not actely constrained by

bounds andfree x0 is the ind& set of free initial conditions. If the user test returns
user_terminate=1 and the other termination conditions are satisfied, plagnin will terminate. If
user_terminate=2 , then pdmin will terminate without rgard to the other termination test3his

function can be used solely for the purpose of performing some operations at the end of each iteration by
always returning 1.See multiplier_update.m for arample.

Extension 3. If the global ariable ARMIJO_USER_TESTis defined in Matlals workspace and is a

string containing the name of alid m-file, the functiorarmijo, which is called bypdmin to compute

the Armijo step-length, will call that m-file in order to guarantee that the step-length satisfies
ARMIJO_USER_TEST(j,x,x0,u,t,ialg,l_i,free_x0) <=0

wherex andu are @auated at the current trial step-length dand andfree_x0 have the same mean-

ing as for Extension 2This extension can be used, for instance, in a barrier function algorithmuenpre

trial step-lengths that are outside thgioa of definition of the barrier function.

Notes:

The followving features are used in the current implementatiqgudofin.

1. A scaling for the objeate function is computed using the objeetialing 2 described foriots.
The primary purpose of this scaling is tovar® an &cessve rumber of function ealuations during the
first line search.

Section 6: Optimization Programs 65

pdmin

2. TheArmijo step-length adjustment mechanism will stop increasing the step-lerigthGfand and
the net increase in step-length results in an increase in the olgdatiction.

3. Aquadratic fit is performed at the end of each step-length calculation when the selected search direc-
tion method ionjgr . This fit tales one gtra system simulation.

4. If simulate returnsNaN the step-length will be decreased usiihulate returns a alid result.

5. Becauseof the coordinate transformation, the inner products in the termination tests are inner
products inL,[a, b]. Thusthe tests are independent of the discretizatios.le

6. Controlbounds can be violated if using splines of order 2 if the spline coordinate transformation

is in efect. Thisis only possible with RK4 because splines of orgler2 ae only allaved for RK4 and
LSODA and the transform is turnedfdbr LSODA if bounds are used.

Section 6: Optimization Programs 66

riots

riots

Purpose

This is the main optimization program in RIS 95. Thealgorithm used byriots is a sequential
guadratic programming (SQP) routine called NPSMultiple objective functions can be handled indi-
rectly using the transcription describe in §2.3.

The user is @ed to check thealidity of the usessupplied dekiatives with the utility program
check_derv before attempting to usets.

Calling Syntax

[u,x,f,g,lambda2] = riots([x0,{fixed,{xOmin,xOmax}}],u0,t,Umin,Umax,
params,[miter {var,{fd}}],ialg,
{[eps,epsneq,objrep,bigbnd]},{scaling},
{disp},{lambdal});

Description of Inputs

The first six inputs are described iable O3. The remainder are described here.

miter The maximum number of iterations alled.

var Specifies a penalty on the piagse dervative \ariation[4, Sec. 4.5}° of the control to be
added to the objeett function. Canonly be used with first and second order splines.
Adding a penalty on the piesese dervative variation of the control is useful if rapid oscilla-
tions are obseed in the numerical solutionThis problem often occurs for singular
problems [13,14]n which trajectory constraints are aetidong singular arcsThe penalty
should be ten to ten thousand times smaller thanatue wf the objecte function at a solu-

tion.

fd If a non-zero wlue is specified, the gradients for all functions will be computed by finite-
difference approximationdn this caséh, Dg, and DI will not be called.Default: 0.

ialg Specifies the ingration algorithm used bsimulate.

eps Overall optimization tolerancel-or NPSOL,eps is squared before calling NPSOBee the

SQP usek manual for more detailsDefault; 10°.
epsneq Nonlinear constraint toleranc®efault: 10%.
objrep Indicates function precisionA value of O causes this features to be ignoi2efault: 0.
bigbnd A number lage than the lgrest magnitudexpected for the decisioraviables. Dedult: 16.
scaling Allowable values are 00, 01, 10, 11, 12, 21, Zefault: 00. See description belo
disp Specify zero for minimal displayed output. Beft: 1.

*The piecwise dewvative variation is smoothed to malt differentiable by squaring the terms in the summation.

Section 6: Optimization Programs 67

riots
lambdal Only applies to NPSOL. Controlsanm starts.Default: 0. See description belo
Description of Outputs

The first two outputs are described iralble O4.
f The objectie value at the obtained solution.

g Vector of constraint violations in the folldng order (\.B. linear constraints are treated as
nonlinear constraint for systems with nonlinear dynamics):

Table O5

linear endpoint inequality
linear trajectory inequality
linear endpoint equality
nonlinear endpoint inequality
nonlinear trajectory inequalit
nonlinear endpoint equality

<

lambda2 Vector of Lagrange multipliersThis output has ter columns if NPSOL is usedThe first
column contains the Lagrange multiplierBhe firstm(N + p — 1) components are the multi-
pliers associated with the simple boundsuoriThese are follwed by the multipliers associ-
ated with the bounds on wafiree initial conditions.Next are the multipliers associated with
the general constraint,vgh in the same order as the constraint violations in the ogfput
The second column ddmbda2 contains information about the constraints which is used by
riots if a warm start usinggmbdal is initiated (as described baln

Scaling
There are seral heuristic scaling optionsvalable inriots for use with badly scaled problem$here

are two scaling methods for objeet functions and te scaling methods for constraintsThese are
selected by settingcaling to one of the tw-digit number gien in the following table:

Table O6
scaling Objective Saling Method | Constraint Scaling Metho

00 noscaling noscaling

01 nofunction scaling constraint scaling 1

10 functionscaling 1 no constraint scaling

11 functionscaling 1 constraint scaling 1

12 functionscaling 1 constraint scaling 2

21 functionscaling 2 constraint scaling 1

22 functionscaling 2 constraint scaling 2

Section 6: Optimization Programs

68

riots

In the folloving, FACTOR =20. Also,7g = (Ug, £o)-

Objective Saling 1: For eachv[q,, thev-th objectve function is scaled by
1
vg = —————— FACTOR.
® 1+ |fv(no)l

Objective Saling 2: For eachv[q,, let
S = (1+1holko) / (100]2 £ (770) o)

on = [no — SO (o)«

— }E (5771577>| B
2 5 f¥(no + 6m0) = £¥(n0) = (O f¥(m0), 61m0)1

where [Ji; is the projection operator that projects itguament into the igion feasible with respect to the
simple bounds oo andé&, and | is the set of indices afy corresponding to components which are in the
interior of this feasible ggon (y is the distance along the projected steepest descent direotidn, the
minimum of a quadratic fit td ((). If y =10, scale thev-th objectve function byy! = FACTORy.
Otherwise, computg = [[Of"(no)]. If y = 1073, sety) = FACTORy. Otherwise, use function scaling 1.

14

Constraint Scaling 1: For eachv[l] g, the endpoint inequality constraints are scaled by

1
= FACTOR,
® max {1, pLi(no)l }

for eachv] g, the endpoint equality constraints are scaled by

1
7l = FACTOR,
¢ max{1, bhemo)l }

and, for eacl[D q;, the trajectory inequality constraints are scaled by

1
n = FACTOR.
max {1, max ¥ (tk, Xk, U
{ o (T I (tis Xico U] }

Constraint Scaling 2: The trajectory constraint scalings are computed in the saageaw for con-
straint scaling method 1For eachv(l] q,, the endpoint inequality constraints are scaleg¢ by y and,
for eachv[] g the endpoint equality constraints are scaled = y wherey is determined as fol-
lows. If|g(n0))| = 1073, let

y = FACTOR,

19(70)!
otherwise, if|Jg(n0)] = 1073, let

y = FACTOR,

I09(70)l
otherwise do not scale.

Scaling will not alvays reduce the amount ofork required to sokr a pecific problem.In fact, it
can be detrimentalln the folloving table, we sh@ the number of iterations required to solsome

Section 6: Optimization Programs 69

riots

problems (described in the appendix) with and without function scaligof these problems were
solved using second order splines on a uniform mesh with a discretizaibofl®&N = 50. Theproblems
were sohed usingscaling set to 0, 10, and 20t should be noted that none of these problems is seri-
ously ill-conditioned.

Table O7
Problem ialg 0 10 20
LOR 2 7 7
Rayleigh w/o endpoint constraint 2 17 14
Rayleigh with endpoint constraint] 2 24 29 19
Goddard w/o trajectory constraint| 4 29 45
Goddard with trajectory constraint 4 22 17 19

For the last rav, riots was called withvar = 10. Constraint scaling did not ke any dfect on the
number of iterations for these probleniiscussion of scaling issues can be found15,16].

Warm Star ts

The inputlambdal controls the werm-starting featurevailable with riots if it is linked with NPSOL.
There are tw types of varm starts.

The first type of warm start is acteted by settingambdal=1 . If this warm start is used, the
Lagrange multiplier estimates and Hessian estimate from thiopserun will automatically be used as
the starting estimates for the current rdmis is useful ifriots terminates because the maximum number
of iterations has been reached and you wish to continue optimizing from ndisreft off. Thistype of
warm start can only be used if the ypi@us call toriots specifiedambdal=-1 orlambdal=1 . Setting
lambdal=-1 does not cause aanm-start, it just prepares for amn start by the e call toriots.

The second type ofavm start allavs warm starting from the pveéus solution fronriots but inter
polated onto a e mesh and is only implemented for first and second order splihés.activated by
providing estimates of the Lagrange multipliers in the first column of itggubdal and the status of
the constraints in the second columnawshbdal . Typically, lambdal is produced by the program dis-
tribute which appropriately interpolates tlaenbda2 output from the pngous run ofriots onto the ne
mesh. Whetambdal is supplied in this @y, riots estimated (r), the Hessian of the Lagrangian at the
current solution point, by applying finite-tlifences to the gradients of all objeetend constraint func-
tions weighted by their Lagrange multipliers (and scalings if a scaling option has been specified).

The estimatéH () of the Hessian of the Lagrangian is computed by the progoemp_hess This
computation requireBl + p + Ngee yo SYstem simulations (Whemg,qe «o IS the number of free initial con-
ditions) and twice as mgrgradient computations as there are obyecfunctions and constraints with
non-zero Lagrange multiplierd\lso, if a non-zero alue forvar is specified, the second detive d the
penalty term on the piesgse denvative variation of the control is added to the Hessian estimatieen
p < 2, the computation ta&ls adantage of the symmetry of the Hessian by stopping the simulations and
gradient computations once the calculations start filling the Hessiap #&baliagonal.After H is com-

puted, it is coverted into transformed coordinates using the formdla (M;Y2)THM;Y?, unless the

Section 6: Optimization Programs 70

riots

transformation mechanism has been disabled.

Because NPSOLxpects the Cholegkfactorization of a posite cefinite Hessian estimate, the fol-
lowing additional steps are k. Firsta Cholesk factorization is attempted d#h. If this fails (because
is not positve cefinite) the computation continuEs with the faling procedure.A singular \alue
decomposition is performed to obtain taetbrizationH = USV', whereSis the diagonal matrix of sin-
ular \alues ofH. Next, each diagonal element;, of Sis set tog; = max{ai,gﬁq/gch}. Then, we set
=USU', which, becausél = H T, makes all ngaive ;}'ﬁen/alues ofI—F positive while preserving the

eigenstructure oﬁ Finally, the Cholesk factorization ofH is computed.
Notes:

1. SinceNPSOL is not a feasible point algorithm, it iselik that intermediate iterates will violate some
nonlinear constraints.

2. Becausef the coordinate transformation, the inner products in the termination tests correspond to
innerproducts inL,[a, b]. Thusthe tests are independent of the discretizatiod.le

3. Controlbounds can be violated if using splines of order 2 if the spline coordinate transformation
is in efect. Thisis only possible with RK4 because splines of orgler2 ae only allaved for RK4 and
LSODA and the transform is turnedfdbr LSODA if bounds are used.

Bugs:

1. riots uses the Matlab MEX functiomexCallMATLAB to male alls tosimulate. There is a bg in
this function that interferes with the operatiorctof-C . This problem can be circuramted by compil-
ing simulate directly intoriots (see instructions on compilingts).

2. Thefull warm-start feature, which requires the computation of the Hessian using fifetertifng
of the gradients, is not alkeed if the inpufd is set to a non-zeraalue.

Section 6: Optimization Programs 71

7. UTILITY ROUTINES

There are seral utility programs, some are used by the optimization programs and some are callable by
the user Those utility programs of interest to the user are described in this sethiese are:

control_error Computes an estimate of the norm of the error of the computed sollftipg: is the
computed solution ang’ is a local minimizer for probler®CP, the solution error is
IoN" =7l

distrib ute Redistrilutes the intgration mesh according to one of/a@l mesh refinement strate-
gies including one which simply doubles the me$he control spline defined on the
previous mesh will be interpolated onto the me3he order of the spline is all@d to
change.

est_errors Returns an estimate of the global gragion error for the figd step-size Rungetita
methods and uses thanable step-size ingeation algorithm to obtain accurate mea-
sures of the objeate functions, constraint violations and trajectoridésalso returns
the function space norm the free portion of the gradient of the augmented Lagrangian
which is needed bgontrol_error.

sp_plot Plots spline functions.

transform Computes a matrix which alis theL, inner product of tw splines to be computed
by taking the inner product of their céefents.

Section 7: Utility Routines 72

control_error

control_error

Purpose

This function usesatlues computed bgst_errors for solutions ofOCP on different intgration meshes
to estimategy — 7' I, for the current solutiony = (uy, $n) using results frond, Sec. 4.4.].

Calling Syntax

[error,norm_zd]=control_error(x01,ul,tl,zel,x02,u2,t2,ze2 {Tf})
Description

This program compares the dveolutions 7y, = (ul,x01) and ny, = (u2,x02), corresponding to the
mesh sequence$ andt2 to produce an estimate ¢fy, -7 ||y, wherer = (4, &) is a lution for
OCP. For free final time problemd,f should be set to the duration scaletér (see transcription for free
final time problems in 82)Only the first columns 0%k01 andx02 are used.The inputszel andze2
are the norms of the free gradients of the augmented Lagrangauated atyy, andzy,, respectiely,
which can be obtained from callsdst_errors.

The outpukrror s the estimate off7ly, — 7 I, where
a+(b-a)Tf
o, =77 IR, =102 = £ B + J' luz(t) - 0" (®)[Bdt
a

with u,(DJthe spline determined by the cheientsu2. The outpunorm_zd is |y, — 7n, I, Where

a+(b—a)Tf
7, — 71w, I, = K02 —Xx01 | + j llux(t) - us (D)I3dt

a

with uy()and uy(Dlthe splines determined by the do@éntsul andu2, respecirely.
Example

Let u; be the codicients of the spline solution for the megh and letu, be the codicients of the spline
solution for the mest? . Let 1, and 4, be the Lagrange multipliers (if the problem has state constraints)
and letl, andl, be the inde set of inactve @wntrol bounds returned by one of the optimization programs
(if the problem has control boundsyhe Lagrange multipliers and the inaeticontrol bound inde sets

are also returned by the optimization routingfien we can compute the erroeg,= [7n, —77* I+, and

& = |, =77 Iln, as follaws:

>> [int_errorl,norm_gLal] = est_errors(x0,ul,tl1,1,ialgl,lambdal,l1);
>> [int_error2,norm_gLa2] = est_errors(x0,u2,t1,1,ialg2,lambda2,12);
>> errorl = control_error(x0,u2,t2,norm_gLa2,x0,ul,t1,norm_glLal,1);
>> error2 = control_error(x0,ul,t1,norm_glLal,x0,u2,t2,norm_glLa2,1);

See Also: est_errors.

Section 7: Utility Routines 73

distribute

distribute

Purpose

This function &ecutes various stratgies for redistribting and refining the current imggetion mesh.lIt
also interpolates the current control and Lagrange multipliers corresponding to trajectory constraints onto
this nev mesh.

Calling Syntax

[new_t,new_u,new_lambda,sum_Ite]=distribute(t,u,x,ialg,lambda,
n_free_ x0,strategy,
{FAC},{new_K},{norm})

Description of Inputs

t Row vector containing the sequence of breakpoints for the current mesh.

u The coeficients of the spline defined on the current mesh.

X Current state trajectory solution.

ialg Integration algorithm to be used duringxhsimulation or optimization.

lambda Current Lagrange multiplier estimates framats. Specify lambda=[] if you do not

need ne/ multipliers for a varm start ofiots.

n_free_x0 Number of free initial conditionsThis value only afects the gtension of Lagrange mul-
tipliers needed for aavrm start ofiots.

strategy Selects the redistriftion stratgy according to the folleing table:

strategy Type of Redistribtion
1 Movable knots, absolute local truncation error
2 Fixed knots absolute local truncation error
3 Double the mesh by halving each intdrv
4 Just change spline ordernew_K.
11 Movable knots, relatie local truncation error
12 Fixed knots, relatie local truncation error

For more information on these strgtes, see Chapter 4.3.24n The quasi-uniformity
constant in equations (4.3.13) and (4.3.24) of that reference is&et 50. InStep 2of
Stratgyy 2 (and 12)¢ = 1/4.

FAC For use with stratgies 1,2,11 and 12If specified, the number of inteals in the ne
mesh is chosen to ackiean integration accuracapproximately equal to the current inte-
gration accuracdivided byFAC If FAC=[] or FAC=0, the number of intells in the
nev mesh will be the same as the yioeis mesh for stragges 1 and 11For strategies 2
and 12, the relate arorsg, will be used without being pre-weighted BAC

new_K Specifies the order of the output spline with Gioeintsnew_u. By default, new_K is
the same as the order of the input spline withfaentsu.

Section 7: Utility Routines 74

distribute

norm Specifies the norm used to measure thegiat@on error on each inteak If norm=0,
then

e = ||Itek||2, k=1,...,N .
If norm=1, then
e = [Iteglo » kK=1,...,N.

The quantity Itg is an estimate of the local truncation error produced bk-teintegra-
tion (see description aimulate, form 7). Default: 0.

Description of Outputs

new _t Contains the sequence of breakpoints for thve mesh.

new_u Contains the coétients of the spline of orderew_K (if specified) interpolated frora
onto the n& mesh.

new_lambda Two column matrix of Lagrange multiplier estimates and associate constraint status indi-
cators. Thosenultipliers (and indicators) corresponding to control bounds and trajectory
constraints arextended to the me mesh. Thiss for use with the arm start &cility of
riots.

sum_lte An (n + 1)-column ector of the accumulated local truncation errors produced by the inte-
gration:

N
sumlte (i)=> ¢, i=1,..,n+1,
k=1

Whereeik is as computed ake. The (O + 1)-th component represents the accumulation of
local truncation errors for the igeand of the first objeaté function.

Notes:
1. Thealgorithm used in stragges 1 and 2 does not @kto account the presence, ifyanof trajectory
constraints. Stratges 2 and 12 include a mechanism that tends to add mesh points at times, or near

times, where trajectory constraints are\actiThe inputtambda must be supplied for this mechanism to
be used.

Section 7: Utility Routines 75

est_errors

est_errors

Purpose

This function performs a high accuyaintegration with LSOIA to produce estimates ofavious quanti-
ties. Oneof these quantities is used byntrol_error to produce an estimate pfy| - 7" [

Calling Syntax

[int_error,norm_glLa,J,G,x,li] = est_errors([x0,{fixed}],u,t, Tf,
ialg,lambda,{l_i})

Description of Inputs

x0 Initial conditions of thecurrent solution When one or more initial conditions are free
variables, sex0=x(:,1) = wherex is the trajectory solution returned by one of the opti-
mization programs.

fixed An n-vector that indicates which components0fare free ariables. Iffixed(i)=0
thenxO(i) is a free ariable. Dedult: all ones.

u Current control solution.

t Sequence of breakpoints for the currentgrdaéon mesh on the (nominal) time intarv
[a, b].

Tf The duration scaleattor For fixed final time problems, séf=1 .

ialg Integration algorithm used to produce the current solution.

lambda Vector of Lagrange multiplier estimates (one opbtewlumns depending on which opti-

mization program producddmbda).

| Index set of controls and free initial conditions that are not at their bounds (returned by
one of the optimization program).

Description of Outputs

int_error int_error(i) , i=1,...n+1, is an estimate of the global igtation error
|XiN,N+1 - x'(b)|, of the current solution computed by summing the local truncation errors
produced by the inggation method specified bglg . The local truncation errors are
obtained by a call teimulate (form 7). If the discrete solr or the ariable stepsize inte-
gration routine is being useitht_error is set to a gctors of zeroslf this is the only
output requested, the rest of the calculations are skipped.

norm_glLa This is an estimate of the, norm of the free gradient of the augmented Lagrangign
evduated at the current solution= (u, £). TheH, norm of the free gradient of the aug-
mented Lagrangian is the norm restricted to the subspace of controls and initial condi-
tions that are not constrained by their boundst grad_Lu be the gradient of the aug-
mented Lagrangian with respect to contrgled_Lx0 be the gradient of the augmented

Section 7: Utility Routines 76

est_errors

Lagrangian with respect to initial conditions avg, be the spline transformation matrix
computed bytransform. If li is the ind& set estimating the free portion of
n = [u(’);xi(free_x0)] (see belw), then the free norm if computed as falk

Btreelc,a()ln, = gLM(li)*gL(li) :
where
gLM= [grad_Lu(:) M}!;grad_LxO(free_x0)]
and
gL= [grad_Lu(:)grad_LxO(free_x0)].
In forming the augmented Lagrangiah= lambda(:,1) andc; = |4j|. Thequantity
[Oreelc 4 (7)1, is used bycontrol_error to estimate the errdrj - 7 [

J An estimate of the objeee function at the current solutionThis estimate is produced using
LSODA.

G An estimate of the sum of constraint violatioff$is estimate is produced using LS®D
X The solution trajectory as produced using L0OD

li Set of indices that specify those time points in the nietiiat are contained in the estimdtef
subintenals in [a, b] on which the control solution is not constrained by a control boundvwetio
by the indices of anfree initial conditions that are not constrained by a bouruds inde set is
used bycontrol_error. For the purpose of demonstration, consider a single input systemsLj
with no free initial conditionsLet

| ikDDDI_i [tk-1, tkea]

wheretg =t; andty+o = tn+1- I is an estimate of the time intafs on which the control bounds
are inactve. From| , the inde setli is set to
i ={k|tmDT}.
When there are multiple inputs, this procedure is repeated for each Wpah there are free initial
conditions, the indices of the unconstrained component8(&ee_x0) are added to the end of
li .
Notes:

1. Ifthe user does not supply the gative functionsDh andDI then it will be necessary to change the
statementALG=5 to IALG=6 in the file est_errors.m.

See Also: control_error.

Section 7: Utility Routines 77

sp_plot

sp_plot

Purpose
This program allars the user to easily plot controls which are represented as splines.

Calling Syntax

val = sp_plot(t,u,{tau})

Description
Produces a plot of the spline with ciie@&ntsu defined on the knot sequence constructed from the inte-
gration mesh . The order p, of the spline is presumed equallémgth(u) - N +1. If tau is speci-

fied, u is not plotted, justvaluated at the timetau . Otherwise,u is plotted at 100 points with the same
relative pacing as the breakpointstin Second order splines can also be plotted using the Matlab com-
mandplot instead osp_plot

If the inputtau is not gven, then the output igal=[t;uval] wheret are the data points and
uval are the dataalues;uval has the same number ofw® as the inputi. If the inputtau is given,
then the output is justal=uval

Example. This example plots a first, second and third order spline approximation to one period of a
sinusoid using ten data pointshe splines are produced using the commands in the Splotieok.

>> t=[0:2*pi/10:2*pi];

>> gpl = spapi(t,t(1:10),sin(t(1:10)));

>> [dummy,ul] = spbrk(spl);

>> knots2 = augknt(t,2); knots3 = augknt(t,3);
>> sp2 = spapi(knots2,t,sin(t));

>> [dummy,u2] = spbrk(sp2);

>> tau = aveknt(knots3,3);

>> sp3 = spapi(knots3,tau,sin(tau));

>> [dummy,u3] = spbrk(sp3);

>> sp_plot(t,ul); sp_plot(t,u2); sp_plot(t,u3);

First order spline Second order spline Third order spline

Section 7: Utility Routines 78

transform

transform

Purpose

This function produces the transformation maty. It is alled byriots and pdmin to generate the
spline coordinate transformation for the controls.

Calling Syntax

Malpha = transform(t,order)
Description

Given two linesu; andu, of orderp = order with coeficienta, andea, defined on the knot sequence
with breakpoints gien by t, (ug, Uz}, = trace(alMaaI). This function works with non-uniform
meshes and with repeated interior knot points.

The outputMalpha is given in gparse matrix formatThe transform matrix fop = 1,2, 3,0r 4
has been pre-computed for uniformly spaced mesh poiisn, if the inputs to the preceding call to
transform, if there vas a preceding call, were the same as #iheeg of the current inputs, then thevpre
ously computed transform matrix is returned.

Example

This example generates twsecond order splines and computes thginnerproduct by intgrating their
product with the trapezoidal rule on ery fine mesh and by using,, .

>>t=[0:.1:1];

>> knots = augknt(t,2);

>> coefl = rand(1,11); coef2 = rand(1,11);
>> spl = spmak(knots,coefl);

>> sp2 = spmak(knots,coef2);

>> tau = [0:.0001:1];

>> ul = fnval(spl,tau);

>> u2 = fnval(sp2,tau);

>> inner_prod1 = trapz(tau,ul.*u2)

inner_prod1 = 0.2800

>> Malpha = transform(t,2);
>> inner_prod2 = coefl*Malpha*coef2’

inner_prod2 = 0.2800
>> inner_prodl-inner_prod2

ans = 1.9307e-09

Section 7: Utility Routines 79

8. INSTALLING, COMPILING AND LINKING RIO TS Most of the programs supplied with
RIOTS_95 are pre-compiled and ready to run a®isdefault, RIOTS_95 is configured to run user prob-
lems supplied as ‘'sys_*.m’ m-files'The m-file form is described in Section 4 of this manufathe user
wishes to run RIDS_95 in this manngno compilation and/or linking is required-owever, a sgnificant
increase in performance is possible if the user supplies his problem descprition in Gnctide.case,
the user must compile his C code and link the resulting object code with the simulation prograius.

a fairly straightforvard endegor and is eplained belw.

Note: If you have the RIOTS 95 demo packageibhave rot yet purchased RIB_95, you will not be
able to sole your avn optimal control problemsPlease refer to "license.doc" supplied with the demon-
stration for further details on the RTS_95 purchase agreement.

Compiling User -Supplied System Code
What you need:
1. Windows 3.x/95/NT

2. ARIOTS_95 distrilution packageilable from the RIS homepage
http://robotics.eecs.begley.edu/~adams/riots.html
http://www.cadcam.nus.sg/"elgg/riots.html
or send email to Adam Sclantz (adams@eecs.belky.edu) or
Yangquan Chen (yangquan@ee.nus.sg).

3. Watcom C/C++ compiléf version 10 or up
(http://lwww.poversoft.com/products/languagestacpl.html).

4. Matlab4.2c1 or Matlab 4.0
5. SplineToolbox wersions 1.1a, 1993.11.25.

Important: If you want to use a math function suchsas() in your optimal control problem, you must
include the pre-compiler direvé

#include <math.h>

in your code.

It is recommended that you naala opy of the "simulate.me' that comes supplied with RT&_95
before creating yourven "simulate.mg" with the steps outlined her&hen, if you vant to use the m-file
interface for some reason you cangdpck the original grsion of "simulate.me.

Step 1. Write the usesupplied C routines (refer to 84 for details) required for you optimal control prob-
lem. Seeral sample problems are supplied with RED 95 in the "systems" directonAdditionally,
there is a file called "template.c" which you can use as a starting point for writingwoprablem.

181f you are using Matlab. .0, only \ersion 9.0 or up of the &com C compiler is required.

Section 8: Compiling RIOTS_95 80

Step 2: In the following, assume you kia aeated a C code problem, located in your RBO95/systems
directory called "my_problem.c".Before aecuting these commands,veahe \ersion of "simulate.me
that comes distrilted with RIO'S_95 to another file, saym_sim.m&". Then,if you want to use the m-
file interface later (in which case you canvadm_sim.me&" back to "simulate.me). Opena DOS box
in Windows and &ecute the follaving sequence of commands:

* ‘command /e:4096’ (to increase the size of thevmonment space.)

e ‘cd\riots_95’

» change releant disk/directory setings in "compile.bat" and "cofat" with a file editar
* ‘cd systems’

e ‘compile my_problem.c’
‘linksimu my_problem.o’

These sequence of commands will generate a file called "simulateahieh is used by RIDS_ 95 to
solve your problem.

Step 3: To use RIO'S_95 to sole your optimal control problem,

* Run Matlab and at the Matlab prompt, type:
>> path(path,’\riots_95")
>> cd systems

Now you are ready to use RTS_95 to sole your problem.

The M-file interface .

As mentioned aba, RIOTS_ 95 comes distrilied to run user m-file program$his allovs users that do
not have the Watcom C compiler to use RIG_95. Thamn-file interface for RIO'S_95 can be produced
with the Watcom C compiler with the folleing steps xecuted in a DOS box:

* Compile "msyslink.c"
* Run "linksimu.bat"

With the m-file interfice, the user only needs toad®e "sys *.m" m-files, bt the solution time is much
longer than with C code.

Section 8: Compiling RIOTS_95 81

9. PLANNED FUTURE IMPROVEMENTS

This version of RIS was deeloped wer a period of two years. Mag desirable features that could
have keen included were omitted because of time constraMtyeover, there are manextensions and
improvements that we h& ewisioned for future grsions. W& provide here a synopsis of some of the
improvements currently being planned for hopefullgcoming \ersions of RIOS.

» Automatic Differentiation of usersupplied functions. This would provide automatic generation
of the dewative functionsDh, DI andDI using techniques of automaticfeifentiation [17,18].

» Extension to Large-Scale Poblems. The size of the mathematical programming problem created
by discretizing an optimal control problem (thawit is done in RI®S) depends primarily on the dis-
cretization leel N. The work done by the projected descent algoritipanin, grows only linearly
with N and hencg@dmin (andaug_lagmg) can sole very lage problems.However, these programs

cannot handle trajectory constraints or endpoint equality constfaltite main program imjots, is
based on dense sequential quadratic programming (S€¥pice riots is not well-suited for high dis-
cretization leels. Thereare maw alternate stratgies for etending SQP algorithms to te-scale
problems as discussed[#h Chap. 6]. The best approach is not kmo at this time and a great deal of
work, such as the ork in[19-22] as well as our onvestigations, is being done in this area

e Trajectory constraints. Our current method of computing functions gradients with respect to the
control is based on adjoint equationBhere is one adjoint equation for each functidinis is quite
inefficient when there are trajectory constraints because for each trajectory constraint there is, in
effect, one constraint function per mesh poimhus, for an intgration mesh witiN + 1 breakpoints,
roughly N adjoint equations h& © be lved to compute the gradients at each point of a trajectory
constraint. Analternate stragy based on the state-transition (sewigifj matrix may pree o be
much more dicient. Also,it is really only necessary to compute gradients at pdintshere the tra-
jectory constraints are aeti @ nearactive. The other mesh points should be ignorédhorithms for
selecting the acte a almost actve anstraint are present[ia3,24] along with covergence proofs.

 Stabilization of Iterates. One of the main limitations of the current implementation of F80s
that it is not well-equipped to deal with problems whose dynamics are highly undtabseich prob-
lems, the iterates produced by the optimization routines iTRI€an easily me into regions where
the system dynamic&hlow-up” if the initial control guess is not close to a solutiéior instance, a
very difficult optimal control problem is the Apollo re-entry problgh]. Thisproblem irvolves find-
ing the optimum re-entry trajectory for the Apollo space capsule as it enters thes Bartsphere.
Because of the pisics of this problem, slight diations of the capsules trajectory can cause the cap-
sule to skip dfthe Earths amosphere or todrn up in the atmospher&ither way, once an iterate is a
control that dnies the system into such agien of the state-space, there is namyviior the optimization
routine to receer. Moreover, in this situation, there is noay to aoid these rgions of the state-space
using control constraints.

This problem could bevaided using constraints on the system trajectori¢swever, this is a

very expensve gproach for our method (not for collocation-based methods), especially at high dis-
cretization leels. Also,for optimization methods that are not feasible point algorithms, this approach
still might not work. An intermediate solution is possible because it is really only necessary to check
the trajectory constraints at amMgoints, called nodes, in the igmtion mesh.This can be accom-
plished as follws. Lett, be one such nodeThen define the decisioranable Qk,o which will be

YEndpoint inequality constraints can be handléeotiely with aug_lagmg by incorporating a suitable agti mnstraint set stragyg.

Section 9: Future Improvements 82

taken as the initial condition for irgeating the diferential equations starting at timye This Qk,o is
allowed to be dfierent than thealue x, of the state intgrated up to timé,. Howeve, to ensure that
these walues do, indct, coincide at a solution, a constraint of the fgygtu) = Qk,o— X = 0 must be
added at each nod®ote that, for nonlinear systent,(u) is a ronlinear constraintThe addition of
these nodeariables allavs bounds on that states to be applied at each node pdiistprocedure is
closely related to the multiple shooting method for solving boundanevproblems and is an inter
mediate approach between using a pure contohble parameterization and a control/state parame-
terization (as in collocation methodsee [26]for a discussion of node placement for multiple shoot-
ing methods.

Other Issues and Extensions. Some other useful features for RI®would include:

e A graphical user inteaice. Thiswould allov much easier access to the optimization programs and
selection of optionsAlso, important information about the progress of the optimization such as error
messages andamnings, condition estimates, step-sizes, constraint violations and optimality conditions
could be displayed in a much more accessible manner

e Dynamic linking. Currently the user of RI@S must re-linksimulate for each nes optimal control
problem. Itwould be \ery comwenient to be able to dynamically link in the object code for the optimal
control problem directly from Matlab (without viag to re-link simulate). Thereare dynamic linkrs
available lut they do not work with Matlabs MEX facility.

* For problems with dynamics that arefititilt to integrate, the main source of error in the solution to
the approximating problems is due to thegnédion error In this case, it wuld be useful to use an inte-
gration mesh that is finer than the control meghus, seeral integration steps wuld be takn between
control breakpoints By doing this, the error from the imggeation is reduced without increasing the size
(the number of decisioraviables) of the approximating problem.

* The wariable transformation needed to allthe use of a standard inner product on thefipberft
space for the approximating problems adeisaecomputation to each function and gradierdustion.
Also, if the transformation is not diagonal, simple bound constraints on the controls asgecbmto
general linear constraint8oth of these deficits can be rewed for optimization methods that use Hes-
sian information to obtain search directionisthe Hessian is computed analyticallyen the transforma-
tion is not needed at allf the Hessian is estimated using a quasii® update, it may be didient to
use the transformation matrM y or M, as the initial Hessian estimate (rather than the identity matrix)
and dispense with theaxiable transformationWe havenot performed thisxperiment; it may not ark

because the the updates will be constructed from gradients computed in non-transformed cd@rdinates

* |t may be useful to alle the user to specify bounds on the controldties. Thiswould be a sim-
ple matter for piecgise linear control representations.

* Currently the only ay to specify general constraints on the controls is usingdrtate-control tra-
jectory constraints.This is quite indfcient since adjointariables are computeditbnot needed for pure
control constraints.

e Currently there is no mechanism in RI®for to directly handle systems with time-delaysnmwre
generally integro-differential equation29]. Thiswould be a non-triial extension.

Bwith appropriate choice d, quasi-Nevton methods are wariant with respect to objest function scalings[27,28],ub not coordinate
transformations (which isaviable scaling).

Section 9: Future Improvements 83

Add support for other nonlinear programming routinesats.

There hae keen \ery fav attempts to mad quantitative comparisons between tifent algorithms
for solving optimal control problemsThe fev reports comparing algorithnid0,31], involve a snall
number of gample problems, are inconclusiand are out of dateTherefore, it wuld be of great use to

hare an extensive comparison of some of the current implementations of algorithms for solving optimal
control problems.

Make it easy for the user to smoothly interpolate from data tables.

Section 9: Future Improvements 84

APPENDIX

This appendix describesvgeal optimal control problemxamples that are supplied with RTS_95
in the ‘systems’ directoryControl bounds can be included on the command line at run-Bee.the file
‘systems/README'’ for a description of the code for these problems.

Problem: LQR [10].

1
min J(u) iJ’ 0.625¢> +0. 5xu+ 0. 5u? dt
0

subject to:

X=3x+u ; x0)=1.

This problem has an analytic solutionayi by
d'(t) = - (tanh(1-t) + 0. 5) cosh(t t)/cosh(1) , tII[0, 1],
with optimal costi* = e?sinh(2) / (1+ €?)? = 0. 380797.

Problem: Bang [13, p. 112].

minJ(u, T) =T
u,T

subject to:
).(1 = X2 X]_(O) =0 s Xl(T) = 300
Xo=U ; X(0)=0, x(T)=0,
and
-2<u(t) <1, Vto[o,T].

This problem has an analytic solution which gegiby T =30 and

0<t<20 20<t<30
' (t) 1 -2

X; (t) t2/2 -t2+ 60t - 600
X5 (t) t 60— 2t

Section 10: Example Poblems 85

Problem: Switc h[13(pp. 120-123),32].

minJ(u) = "2t

W =

subject to:
x=v ; xX@0)=0, x1)=0
v=u ; vi0)=1,v())=-1

x(t)-L <0, Vto[o,1],

with L = 1/9. This problem has an analytic solutioRor any L such that &< L < 1/6, the solution is
J = & with
CTH

0<t<3L 3L<t<1-3L 1-3L<t<1
F© | -st-g) 0 - -5
v (1-4)? 0 (1-Lty2
X(t) | LA-(1-2)7) L LA-(1-%H%)

Problem: Rayleigh[33,34].

inJ g 2d
minJ(u) = X7+ u“dt
inJ() = [

subject to:

X1(t) = Xa(t) X1(0)= -5
Xo(t) = = Xq(t) + [1. 4 0. 143(1)] Xo(t) + 4u(t) X,(0) = =5

A constrained grsion of this problem is formed by including the state constraint

x1(2.5)= 0.

Problem: VanDerPol[33].

5
min J(u) :%I X2+ x5+ u? dt
u
0

subject to:

X1 (t) = Xa(t) x,(0)= 1
Xo(t) = = x1(t) + (1= x5)%a(t) +ut) %(0)= 0

-x1(5)+x,(5)-1=0.

Section 10: Example Poblems 86

Problem: P arabola[35].

; ct2, 2 2
min J(u) :J’ x{ + x5 +0. 005° dt
u 0
subject to:
X1 =Xz ; X1(0)=0

Xo==Xo+tU ; X(0)=-1
and

Xoq) —8(t—0.5¢ +0.5<0, \/ {IJ[0, T].

Problem: Obstac le [36].

min J(u) = 5xy(2. 9¥ + X,(2. 9¥

subject to:
).(1 = X2 Xl(O) =1
X, =u—-0.1(1+2x9)x, Xp(0)=1

~1<u(t)<1, VtO[o,2.9]

[Xa(t) - 0. 4cF

1-90a® -1~ 5= g5

<0, Vt[0,2.9]

-0.8-x,(t) <0, V tD[0,2.9].

Section 10: Example Poblems

Problem: God dard Rocket, Maxim um Ascent [37].

rlrJ\z%li(u, T) =h(T)

subject to:
1 1
V== u-D V) -, DY) = 1CoAnv?e @™ v(0)= 0
f=y h(0)=1
1
r'n=—Eu mO0)=1; m(T)=0.6

O<u(t)<3.5, Vt1[o,T].
whereg = 500,Cp = 0. 05and Apg = 12, 400. The \ariables used abe havethe folloving meanings:

vertical velocity

radial altitude abee earth (=1 is earth’s aurface)

mass of ehicle

thrust

specific impulse (impulse per unit mass of fugined,c = 0. 5)
air density p = poe’™M)

dynamic pressureg(= 3 pv?)

drag

o v oc 3 <

The endpoint constraimi(T) = 0. 6 means that there is ho more fuel left in the edckAnotherversion
of this problem includes the trajectory constraint

Aq(t) <10, V D0, T] .

This is a upper bound on the dynamic pressypemrenced by the roek during ascent.

Section 10: Example Poblems 88

10.

11.

12.
13.

14.

15.

16.

17.

18.

REFERENCES

A. Schvartz and E. Polak, “Consistent approximations for optimal control problems based on
Runge-Kitta intgration; SIAM J Control Optim. 34(4)(1996).

A. Schvwartz and E. Polak, “Rungethta discretization of optimal control probleiis) Proceed-
ings of the 10th IKC Workshop on Contl Applications of Optimizatign(1996).

A. Schvartz and E. PolakA'family of projected descent methods for optimization problems with
simple bound$,J. Optim. Theory and Appl91(1)(1997).

A. Schwartz, “Theory and Implementation of Numerical Methods Based on Ruuate-Ktera-
tion for Solving Optimal Control Problemi$?h.D. Dissertation, Dept. of Electrical Engineering,
University of California, Berkley (1996). Avaiable from
http://robotics.eecs.berkeley.edu/"adams

E.Polak, “On the use of consistent approximations in the solution of semi-infinite optimization and
optimal control problemsMath. Piog 62 pp. 385-415 (1993).

Carlde Boor A Practical Guide to SplinesSpringerVerlag, Nev York (1978).

J.D. Lambert,Numerical Methods for @inary Differential SystemsJohn Wley and Sons, Eng-
land (1991).

K. Radhakrishnan and A. C. Hindmarsh, “Description and use of LSODE,\teaniore Soler for
Ordinary Differential EquationSNASA Reference Publ. 1327 (1993).

L. R. Petzold, Automatic selection of methods for solving fséihd nonstif systems of diferential
equations, SIAM J <ci. Stat. Comput4 pp. 136-148 (1983).

WW. Hager “Rates of covergence for discrete approximations to unconstrained control problems,
SIAM J Numer Anal. 13(4) pp. 449-472 (1976).

L. S. Jennings, M. E. FisheK. L. Teo, and C. J. Goh, “MISER3: Solving optimal control prob-
lems---an updaté Advances in Engineering softveek4(13) pp. 190-196 (1991).

RPE. Gill, W. Murray, and M. H. Wright,Practical OptimizationAcademic Press, London (1981).

A. E. Bryson and YHo, Applied Optimal Contl, Hemisphere Publishing Corp. (1975yevised
printing)

D. J. Bell and D. H. Jacobsoisingular Optimal Contil Problems,Academic Press, London
(1975).

L. T. Biegler and J. E. Cuthrell, “Impved infeasible path optimization for sequential modular sim-
ulators--II: the optimization algorithin,Computes & Chemical Engineeringd(3) pp. 257-267
(1985).

O. Stryk, “Numerische Losung optimaler Steuerungsprobleme: DiskretisieriargmBteropti-
mierung und erechnung der adjungiertemiabler, D iploma-Math., Munchen Uwmeérsity of Tech-
nology VDI Verlag, Germay (1995).

A. Griewank, D. Juedes, and J. BtkADOL-C: A pakage br the automatic diérentiation of algo-
rithms written in C/C++, Argonne National Laboratory, ftp://info.mcs.ankfmb/ADOLC
(December 1993).

A. Griewank, “On automatic dferentiation;, Preprint MCS-P10-1088, Aonne National

References 89

Laboratory, ftp://info.mcs.anl.gdpub/tech_reports/reports (October 1988).

19. J.T. Betts and PD. Frank, ‘A sparse nonlinear optimization algoritiind, Optim. Theory and Appl.
82(3) pp. 519-541 (1994).

20. J.T. Betts and WP Huffman, “Path-constrained trajectory optimization using sparse sequential
guadratic programmirig,). Guidance Control, and Dynamic4.6(1) pp. 59-68 (1993).

21. HenrikJonson, “Neton Method for Solving Non-linear Optimal Control Problems with Genereal
constraint$,Ph.D. Dissertation, Linkping Studies in Science andchnology (1983).

22. J.C. Dunn and D. PBertsekas, “Hfcient dynamic programming implementations ofwtien’s
method for unconstrained optimal control problénds,Optim. Theory and Appl63(1) pp.23-38
(1989).

23. J.E. Higgins and E. PolakAh e-actve barrierfunction method for solving minimax problers,
Appl. Math. Optim.23 pp. 275-297 (1991).

24. J.L. Zhou and A. L. Tts, "An SQP algorithm for finely discretized continuous minimax problems
and other minimax problems with maabjective functions) to appear in SIAM .JOptimization ().

25. 0O.Stryk and R. Bulirsch, “Direct and indirect methods for trajectory optimizatlamals of Oper
ations Resea&h 37 pp. 357-373 (1992).

26. U.Ascher R. Mattheij, and R. RusselNumerical Solution of BoundaryaMe Poblems for Odi-
nary Differential EquationsPrentice Hall, Engl®ood Cliffs, NJ (1988).

27. D.F. Shanno and K. H. Phua, “Matrix conditioning and nonlinear optimizdtidath. Piog. 14 pp.
149-160 (1978).

28. S.S. Oren, “Perspestes on <elf-scaling \ariable metric algorithms J. Optim. Theory and Appl.
37(2) pp. 137-147 (1982).

29. FEH. Mathis and G.WReddien, “Diference approximations to control problems with functional
arguments, SIAM J Control and Optim. 16(3) pp. 436-449 (1978).

30. D.I. Jones and J. WFinch, “Comparison of optimization algortihrhsint. J. Control 40 pp.
747-761 (1984).

31. S.Strand and J. G. BalcherA ‘Comparison of Constrained Optimal Control Algorithhsp.
439-447 inlFAC 11th Triennial World Congess , Estonia, USSR (1990).

32. 0. Stryk, “Numerical solution of optimal control problems by direct collocatidmternational
Series of Numerical Methematit$lpp. 129-143 (1993).

33. N.B. Nedeljlovi¢, “New agorithms for unconstrained nonlinear optimal control problent=EE
Trans. Aitom. Cntrl. 26(4) pp. 868-884 (1981).

34. D.Tawar and R. Svan, “An Efficient Numerical Algorithm for the Solution of a Class of Optimal
Control Problems,|IEEE Trans. Autom. Cntrl. 34(12) pp. 1308-1311 (1989).

35. D.H. Jacobson and M. M. LeleA‘transformation technique for optimal control problems with a
state ariable inequality constraifttEEE Trans. Optim. Cntrl.14(5) pp. 457-564 (1969).

36. V. H. Quintana and E. J. a&on, “Clipping-of gradient algorithms to compute optimal controls
with constrained magnitudent. J. Control 20(2) pp. 243-255 (1974).

37. H.Segwald and E. M. Clif, “Goddard Problem in Presence of a Dynamic Pressure LidniGuid-
ance Control and Dynamic4.6(4) pp. 776-781 (1993).

References 90

References

91

