
�
ecur sive�
ntegration�
ptimal�
rajector y�
olver���

A M atlab Toolbox for Solving
Optimal Contr ol Problems

Version 1.0 for Windows

May 1997

by

A. Schwartz, E. Polak and Y. Chen

0 0.5 1
−4

−2

0

2

4

6

8

10

12

14

16

Time

Optimal Control

0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

Time

Optimal Trajectory

Conditions f or Use of RIO TS_95™

To use any part of the RIOTS_95 toolbox the user must agree to the following conditions:

1. TheRIOTS_95 toolbox for solving optimal control problem is distributed for sale according to the
RIOTS_95 license agreement.Use of RIOTS_95 is limited to those users covered under the pur-
chase agreement.

2. Thissoftware is distributed without any performance or accuracy guarantees. Itis solely the repon-
sibility of the user to determine the accuracy and validity of the results obtained using RIOTS.

3. RIOTS_95, the RIOTS_95 user’s manual, or any portion of either may not be distributed to third
parties. Interestedparties must obtain RIOTS_95 directly from Adam Schwartz or his associates.

4. Any modifications to the programs in RIOTS_95 must be communicated to Adam Schwartz. Modi-
fied programs will remain the sole property of Adam Schwartz.

5. Dueacknowledgment must be made of the use of RIOTS_95 in any resarch reports or publications.
Whenever such reports are released for public access, a copy should be forwarded to Adam
Schwartz.

6. RIOTS_95, or any portion of the software in RIOTS_95, cannot be used as part of any other soft-
ware without the explicit consent of Adam Schwartz.

7. RIOTS_95 has been thoroughly debugged and there are no memory leaks or memory errors in the
code. However, it is possible for the user’s code to create a memory error through faulty use of
pointers or incorrectly allocated memory arrays.

RIOTS_95™: A Matlab Toolbox for Solving Optimal Control Problems, Version 1.0

Copyright © 1997-1998 by Adam L. Schwartz
All Rights Reserved.

NPSOL § is copyright by Stanford University, CA.

Enquiries should be directed to:

Dr. Adam L. Schwartz

333 Quinterra Ln.
Danville, CA 94526
USA
E-mail : adams@eecs.berkeley.edu
Phone : 510-837-8248

A self-extracting RIOTS_95 educational/demonstration kit is available from the following web sites:
http://www.accesscom.com/˜adam/RIOTS
http://www.shuya.home.ml.org/RIOTS_95
http://www.crosswinds.net/singapore/˜yqchen/riots.html
http://www.cadcam.nus.sg/˜elecyq
http://www.ee.nus.sg/˜yangquan/riots.html

Abstract

RIOTS_95: A Matlab Toolbox for Solving Optimal Control Problems

by

A. L. Schwartz and E.Polak

This manual describes the use and operation of RIOTS_95. RIOTS_95 is a group of programs and
utilities, written mostly in C and designed as a toolbox for Matlab, that provides an interactive environ-
ment for solving a very broad class of optimal control problems.RIOTS_95 comes pre-compiled for use
with the Windows3.1, Windows95 or WindowsNT operating systems.

The numerical methods used by RIOTS_95 are supported by the theory in[1-4] which uses the
approach of consistent approximations as defined by Polak[5]. In this approach, a solution is obtained as
an accumulation point of the solutions to a sequence of discrete-time optimal control problems that are, in
a specific sense, consistent approximations to the original continuous-time, optimal control problem.The
discrete-time optimal control problems are constructed by discretizing the system dynamics with one of

four fixed step-size Runge-Kutta integration methods1 and by representing the controls as finite-
dimensional B-splines.The integration proceeds on a (possibly non-uniform) mesh that specifies the
spline breakpoints.The solution obtained for one such discretized problem can be used to select a new
integration mesh upon which the optimal control problem can be re-discretized to produce a new discrete-
time problem that more accurately approximates the original problem.In practice, only a few such re-
discretizations need to be performed to achieve an acceptable solution.

RIOTS_95 provides three different programs that perform the discretization and solve the finite-
dimensional discrete-time problem.The appropriate choice of optimization program depends on the type
of problem being solved as well as the number of points in the integration mesh.In addition to these opti-
mization programs, RIOTS_95 also includes other utility programs that are used to refine the discretiza-
tion mesh, to compute estimates of integration errors, to compute estimates for the error between the
numerically obtained solution and the optimal control and to deal with oscillations that arise in the numer-
ical solution of singular optimal control problems.

1RIOTS_95 also includes a variable step-size integration routine and a discrete-time solver.

Table of Contents

Section 1: Purpose 1

Section 2: Problem Description 3
Transcription for Free Final Time Problems... 4
Trajectory Constraints... 5
Continuum Objective Functions ...5

Section 3: Using RIOTS_95 6
Session 1... 8
Session 2... 11
Session 3... 13
Session 4... 15

Section 4: User Supplied Subroutines 18
activate, sys_activate.. 20
init, sys_init... 21
h, sys_h.. 23
l, sys_l ... 24
g, sys_g.. 26
Dh, sys_Dh; Dl, sys_Dl; Dg, sys_Dg.. 28
get_flags .. 30
time_fnc... 31

Section 5: Simulation Routines 33
simulate... 34
Implementation of the Integration Routines... 41

System Simulation... 41
Gradient Evaluation ...41

check_deriv ... 46
check_grad .. 48
eval_fnc ... 50

Section 6: Optimization Programs 52
Choice of Integration and Spline Orders.. 52
Coordinate Transformation ...55
Description of the Optimization Programs... 58
aug_lagrng .. 59
outer .. 61
pdmin .. 63
riots .. 67

Section 7: Utility Routines 72
control_error ... 73
distribute ... 74
est_errors .. 76
sp_plot... 78
transform... 19

Section 8: Installing, Compiling and Linking RIO TS_95 80
Compiling the User-Supplied System Code... 80
The M-file Interface ..81

Section 9: Planned Future Improvements 82

Appendix: ExampleProblems 85

REFERENCES 89

1. PURPOSE

This chapter describes the implementation of a Matlab2 toolbox called RIOTS_95 for solving opti-

mal control problems.The name RIOTS stands for ‘‘Recursive3 Integration Optimal Trajectory Solver.’’
This name highlights the fact that the function values and gradients needed to find the optimal solutions
are computed by forward and backward integration of certain differential equations.

RIOTS_95 is a collection of programs that are callable from the mathematical simulation program
Matlab. Most of these programs are written in either C (and linked into Matlab using Matlab’s MEX
facility) or Matlab’s M-script language.All of Matlab’s functionality, including command line execution
and data entry and data plotting, are available to the user. The following is a list of some of the main fea-
tures of RIOTS_95.

• Solves a very large class of finite-time optimal controls problems that includes: trajectory and end-
point constraints, control bounds, variable initial conditions (free final time problems), and problems
with integral and/or endpoint cost functions.

• System functions can be supplied by the user as either object code or M-files.

• System dynamics can be integrated with fixed step-size Runge-Kutta integration, a discrete-time
solver or a variable step-size method.The software automatically computes gradients for all func-
tions with respect to the controls and any free initial conditions.These gradients are computed
exactly for the fixed step-size routines.

• The controls are represented as splines.This allows for a high degree of function approximation
accuracy without requiring a large number of control parameters.

• The optimization routines use a coordinate transformation that creates an orthonormal basis for the
spline subspace of controls.The use of an orthogonal basis can results in a significant reduction in
the number of iterations required to solve a problem and an increase in the solution accuracy. It also
makes the termination tests independent of the discretization level.

• There are three main optimization routines, each suited for different levels of generality of the opti-
mal control problem.The most general is based on sequential quadratic programming methods.The
most restrictive, but most efficient for large discretization levels, is based on the projected descent
method. Athird algorithm uses the projected descent method in conjunction with an augmented
Lagrangian formulation.

• There are programs that provide estimates of the integration error for the fixed step-size Runge-Kutta
methods and estimates of the error of the numerically obtained optimal control.

• The main optimization routine includes a special feature for dealing with singular optimal control
problems.

• The algorithms are all founded on rigorous convergence theory.

In addition to being able to accurately and efficiently solve a broad class of optimal control prob-
lems, RIOTS_95 is designed in a modular, toolbox fashion that allows the user to experiment with the
optimal control algorithms and construct new algorithms. The programs outer and aug_lagrng,

2Matlab is a registered trademark of Mathworks, Inc. Matlab version 4.2c with the Spline toolbox is required.
3Iterative is more accurate but would not lead to a nice acronym.

Section 1: Purpose 1

described later, are examples of this toolbox approach to constructing algorithms.

RIOTS_95 is a collection of several different programs (including a program which is, itself, called
riots) that fall into roughly three categories: integration/simulation routines, optimization routines, and
utility programs.Of these programs, the ones available to the user are listed in the following table,

Simulation Routines Optimization Routines Utility Programs

simulate riots control_error
check_deriv pdmin distrib ute
check_grad aug_lagrng est_error
ev al_fnc outer make_spline

transform

Several of the programs in RIOTS_95 require functions that are available in the Matlab Spline toolbox.In
addition to these programs, the user must also supply a set of routines that describe the optimal control
problem which must be solved. Several example optimal control problems come supplied with
RIOTS_95. Finally, there is a Matlab script calledRIOTS_demowhich provides a demonstration of
some of the main features of RIOTS_95. To use the demonstration, perform the following steps:

Step 1: Follow the directions in §8 on compiling and linking RIOTS_95. Also,compile the sample
systems rayleigh.c, bang.c and goddard.c that come supplied with RIOTS_95.

Step 2: Start Matlab from within the ‘RIOTS/systems’ directory.

Step 3: Add the RIOTS_95 directory to Matlab’s path by typing at the Matlab prompt,

>> path(path,’ full_path_name_for_RIOTS’)
>> RIOTS_demo

Limitations. This is the first version of RIOTS_95. Asit stands, there are a few significant limitations
on the type of problems which can be solved by RIOTS_95:

1. Problemswith inequality state constraints that require a very high level of discretization cannot be
solved by RIOTS_95. Also,the computation of gradients for trajectory constraints is not handled as
efficiently as it could be.

2. Problemsthat have highly unstable, nonlinear dynamics may require a very good initial guess for the
solution in order to be solved by RIOTS_95.

3. Generalconstraints on the controls that do not involve state variables are not handled efficiently:
adjoints are computed but not used.

4. RIOTS_95 does not allow delays in the systems dynamics (although Padéapproximations can be
used).

5. Numericalmethods for solving optimal control problems have not reached the stage that, say, meth-
ods for solving differential equations have reached. Solvingan optimal control problem can,
depending on the difficulty of the problem, require significant user involvement in the solution pro-
cess. Thissometimes requires the user to understand the theory of optimal control, optimization
and/or numerical approximation methods.

Section 1: Purpose 2

Conventions. This manual assumes familiarity with Matlab. The following conventions are used
throughout this manual.

• Program names and computer commands are indicated inbold typeface.

• User input is indicated inCourier typeface.

• Optional program arguments are listed in brackets. Thedefault value for any optional argument can
be specified using[] .

• Optional program arguments at the end of an argument list can be omitted in which case these argu-
ments take on their default values.

• Typing a function’s name without arguments shows the calling syntax for that function.Help can be
obtained for M-file programs by typinghelp followed by the function name at Matlab’s prompt.
Typinghelp RIOTS produces a list of the programs in RIOTS_95.

• The machine precision is denoted by� mach.

2. PROBLEM DESCRIPTION

RIOTS_95 is designed to solve optimal control problems of the form4

(u,) ∈∈ Lm∞[a,b]×IRn
minimize



î

f (u,
) =. go(
 , x(b)) + ∫
b

a
lo(t, x, u)dt }





OCP

subject to: ẋ = h(t, x, u) , x(a) =
 , t ∈∈ [a, b] ,

u j
min(t) ≤ u j (t) ≤ u j

max(t) , j = 1, . . . ,m , t ∈∈ [a, b] ,

 j
min ≤
 j ≤
 j

max , j = 1, . . . ,n ,

l � ti (t, x(t), u(t)) ≤ 0 , � ∈∈ qti , t ∈∈ [a, b] ,

g�ei(
 , x(b)) ≤ 0 , � ∈∈ qei ,

g�ee(
 , x(b)) = 0 , � ∈∈ qee ,

wherex(t) ∈∈ IRn, u(t) ∈∈ IRm, g : IRn × IRn → IR, l : IR × IRn × IRm → IR, h : IR × IRn × IRm → IRn and we
have used the notationq =. { 1, . . . ,q } and Lm

∞[a, b] is the space of Lebesgue measurable, essentially
bounded functions [a, b] → IRm. The functions inOCP can also depend upon parameters which are
passed from Matlab at execution time usingget_flags(described in §4).

The subscriptso, ti , ei, and eeon the functionsg(⋅, ⋅) and l (⋅, ⋅, ⋅) stand for, respectively, ‘‘objective
function’’, ‘ ‘trajectory constraint’’, ‘ ‘endpoint inequality constraint’’ and ‘‘endpoint equality constraint’’.
The subscripts forg(⋅, ⋅) and l (⋅, ⋅, ⋅) are omitted when all functions are being considered without regard to

4Not all of the optimization routines in RIOTS_95 can handle the full generality of problemOCP.

Section 1: Purpose 3

the subscript.The functions in the description of problemOCP, and the derivatives of these functions5,
must be supplied by the user as either object code or as M-files.The bounds on the components of
 and
u are specified on the Matlab command line at run-time.

The optimal control problemOCP allows optimization over both the controlu and one or more of
the initial states
 . To be concise, we will define the variable

� = (u,
) ∈∈ H2 =. Lm
∞[a, b] × IRn .

With this notation, we can write, for example, f (�) instead off (
 , u). We define the inner product onH2

as

/
\
�

1, � 2
\
/ H2

=. /
\ u1, u2

\
/ L2

+ /
\
 1,
 2

\
/ .

The norm corresponding to this inner product is given by ||� ||H2
= /

\
� , � \

/
1/2
H2

. Note thatH2 is a pre-Hilbert
space.

Transcription f or Free Final Time Pr oblems.

ProblemOCP is a fixed final time optimal control problem.However, free final time problems are easily
incorporated into the form ofOCP by augmenting the system dynamics with two additional states (one
additional state for autonomous problems).The idea is to specify a nominal time interval, [a, b], for the
problem and to use a scale factor, adjustable by the optimization procedure, to scale the system dynamics
and hence, in effect, scale the duration of the time interval. Thisscale factor, and the scaled time, are rep-
resented by the extra states.Then RIOTS_95 can minimize over the initial value of the extra states to
adjust the scaling.For example, the free final time optimal control problem

u,T
min g

∼
(T, y(T)) +

a+T

a
∫ l

∼
(t, y, u)dt

subject toẏ = h
∼

(t, y, u) , y(a) = � , t ∈∈ [a, a + T] ,

can, with an augmented state vector x =. (y, xn−1, xn), be converted into the equivalent fixed final time
optimal control problem

u,� n
min g(
 , x(b)) +

b

a
∫ l (t, x, u)dt

subject toẋ = h(t, x, u) =.





xnh
∼

(xn−1, y, u)

xn

0






, x(a) =
 =




�
a

 n





, t ∈∈ [a, b] ,

where y is the firstn − 2 components ofx, g(
 , x(b)) =. g
∼

(a + T
 n, y(b)), l (t, x, u) =. l
∼

(xn−1, y, u) and
b = a + T. Endpoint and trajectory constraints can be handled in the same way. The quantityT = b − a
is the nominal trajectory duration.In this transcription,xn−1 plays the role of time and
 n is theduration
scale factor, so named becauseT
 n is the effective duration of the trajectories for the scaled dynamics.
Thus, for any t ∈∈ [a, b], xn(t) =
 n, xn−1(t) = a + (t − a)
 n and the solution,t f , for the final time is

5If the user does not supply derivatives, the problem can still be solved usingriots with finite-difference computation of the gradients.

Section 2: Problem Description 4

t f = xn−1(b) = a + (b − a) � n. Thus, the optimal duration isT* = t f − a = (b − a) � n = T � n. If a = 0 and
b = 1, thent f = T* = � n. The main disadvantage to this transcription is that it converts linear systems
into nonlinear systems.

For autonomous systems, the extra variable xn−1 is not needed.Note that, it is possible, even for
non-autonomous systems, to transcribe minimum time problems into the form ofOCP using only one

extra state variable. However, this would require functions like h(t, x, u) = h
∼

(txn, y, u). SinceRIOTS_95
does not expect the user to supply derivatives with respect to thet argument it can not properly compute
derivatives for such functions.Hence, in the current implementation of RIOTS_95, the extra variable
xn−1 is needed when transcribing non-autonomous, free final time problems.

Trajector y constraints.

The definition of problemOCP allows trajectory constraints of the forml ti (t, x, u) ≤ 0 to be handled
directly. Howev er, constraints of this form are quite burdensome computationally. This is mainly due to
the fact that a separate gradient calculation must be performed for each point at which the trajectory con-
straint is evaluated.

At the expense of increased constraint violation, reduced solution accuracy and an increase in the
number of iterations required to obtain solutions, trajectory constraints can be converted into endpoint
constraints which are computationally much easier to handle.This is accomplished as follows. Thesys-
tem is augmented with an extra state variablexn+1 with

ẋn+1(t) = � max { 0,l ti (t, x(t), u(t)) } 2 , xn+1(a) = 0 ,

where� > 0 is a positive scalar. The right-hand side is squared so that it is differentiable with respect tox
andu. Then it is clear that either of the endpoint constraints

gei(� , x(b)) =. xn+1(b) ≤ 0 or gee(� , x(b)) =. xn+1(b) = 0

is satisfied if and only if the original trajectory constraint is satisfied.In practice, the accuracy to which
OCP can be solved with these endpoint constraints is quite limited because these endpoint constraints do
not satisfy the standard constraint qualification (described in the §4).This difficulty can be circumvented
by eliminating the constraints altogether and, instead, adding to the objective function the penalty term
go(� , x(b)) =. xn+1(b) where now � serves as a penalty parameter. Howev er, in this approach,� must now
be a large positive number and this will adversely affect the conditioning of the problem.Each of these
possibilities is implemented in ‘obstacle.c’ for problem Obstacle (see Appendix B).

Contin uum Objective Functions and Minimax Pr oblems.

Objective functions of the form

u
min

t ∈∈ [a,b]
max l (t, x(t), u(t))

can be converted into the form used in problemOCP by augmenting the state vector with an additional
state,w, such that

ẇ = 0 ; w(0) = � n+1

and forming the equivalent trajectory constrained problem

Section 2: Problem Description 5

(u,� n+1)
min � n+1

subject to

l (t, x(t), u(t)) − � n+1 ≤ 0 , t ∈∈ [a, b] .

A similar transcription works for standard min-max objective functions of the form

u
min �

∈∈ qo

max g
�
(u, �) + ∫

b

a
l
�
(t, x(t), u(t)dt .

In this case, an equivalent endpoint constrained problem with a single objective function,

u,� n+1
min � n+1

subject to

g∼
�
(u, �) − � n+1 ≤ 0 , � ∈∈ qo

is formed by using the augmented state vector (x, w, z) with

ẇ = 0 , w(0) = � n+1

ż
�

= l
�
(t, x(t), u(t)) , z

�
(0) = 0 , � ∈∈ qo ,

and defining

g∼
�
(u, �) =. g

�
(u, �) + z

�
(b) .

3. USING RIOTS_95

This section provides some examples of how to simulate systems and solve optimal control problems with
the RIOTS_95 toolbox. Detailed descriptions of all required user-functions, simulation routines, opti-
mization programs and utility programs are given in subsequent sections.These programs are all callable
from within Matlab once Matlab’s path is set to include the directory containing RIOTS_95. TheMatlab
command

>> path(path,’ full_path_name_for_RIOTS’)
>> RIOTS_demo

should be used for this purpose.Refer to the §8, ‘‘Compiling and Linking RIOTS_95’’, for details on
how to install RIOTS_95.

RIOTS_95 provides approximate solutions of continuous time optimal control problems by solving
discretized ‘‘approximating’’ problems. Theseapproximating problems are obtained by(i) numerically

integrating the continuous time system dynamics with one of four Runge-Kutta integration methods6 and
(ii) restricting the space of allowable controls to finite-dimensional subspaces of splines.In this way, the
approximating problems can by solved using standard mathematical programming techniques to optimize
over the spline coefficients and any free intial conditions.It is not important for the user of RIOTS_95 to

6RIOTS_95 also includes a discrete-time system solver and a variable step-size integration routine.

Section 2: Problem Description 6

understand the discretization procedure or splines.

The accuracy of the solutions obtained in this manner depends on several factors which include:

(1) Theaccuracy of the integration scheme (which depends on the order of the integration scheme
and the selection of the integration mesh).

(2) How well elements of the spline subspace can approximate solutions of the original, infinite-
dimensional problem (this depends on the order and knot sequence of the splines and on the smoothness
of the optimal control).

(3) How accurately the approximating problems are solved by the underlying mathematical program-
ming algorithm.

The allowable spline orders are related to the particular integration method used (see description of
simulate in §5). For problems that have smooth optimal controls, higher order splines will provide solu-
tions with higher accuracy. Smoothness is not, however, typical of optimal controls for problems with
control and/or trajectory constraints.In general, the spline knot sequence is constructed from the integra-
tion mesh

tN =. { tk } N+1
k=1 ,

which also specifies the spline breakpoints.The subscriptN, referred to as the discretization level, indi-
cates that there areN integration steps andN + 1 spline breakpoints.Each spline is determined from the
knot sequence and its coefficients. For a spline of order� , each control input requiresN + � − 1 coeffi-
cients and these coefficients are stored asrow vectors. Thus,a system withm inputs will be stored in a
‘‘ short-fat’’ matrix with m rows andN + � − 1 columns. Moredetails about splines are given in the next
section.

Typically, we use the Matlab variableu to store the spline coefficients. Thesystem trajectories
computed by integrating the system dynamics are stored in the variablex . Like u, x is a ‘‘short-fat’’
matrix with n rows andN + 1 columns. Thus,for example,x(:,k) is the computed value of x(tk).
Other quantities, such as gradients and adjoints, are also stored as ‘‘short-fat’’ matrices.

The following sample sessions with RIOTS_95 solve a few of the sample optimal control problems
that are supplied with RIOTS_95 as examples. AppendixB provides a description of these problems and
the C-code implementations are included in the ‘RIOTS/systems’ sub-directory.

Section 3: Using RIOTS_95 7

Session 1 (unconstrained problem). In this session we compute a solution to the unconstrained non-
linear Problem Rayleigh.This system has two states and one input.We start by defining the initial condi-
tions and a uniform integration mesh over the time interval [0,2. 5] with a discretization level of N = 50
intervals.

We can take a look at the solution trajectories by simulating this system with some initial control.We
will specify an arbitrary piecewise linear (order� = 2) spline by usingN + � − 1 = N + 1 coefficients
and perform a simulation by callingsimulate.

>> N=50;

>> x0=[-5;-5]; % Initial conditions

>> t=[0:2.5/50:2.5]; % Uniform integration mesh

>> u0=zeros(1,N+1); % Spline with all coeff’s zero.

>> [j,x]=simulate(1,x0,u0,t,4,2);

>> plot(t,x)

0 0.5 1 1.5 2 2.5
−8

−6

−4

−2

0

2

4

6
[j,x]=simulate(1,x0,u0,t,4,2);

Next, we find an approximate solution to the Problem Rayleigh, which will be the same type of spline as
u0 , by using eitherriots or pdmin.

>> [u1,x1,f1]=riots(x0,u0,t,[],[],[],100,4);

>> [u1,x1,f1]=pdmin(x0,u0,t,[],[],[],100,4);

The first three input arguments are the initial conditions, initial guess for the optimal control, and the inte-
gration mesh.The next three inputs are empty brackets indicating default values which, in this case, spec-
ify that there are no control lower bounds, no control upper bounds, and no systems parameters.The last
two inputs specify that a maximum of 100 iterations are to be allowed and that integration routine 4
(which is a fourth order Runge-Kutta method) should be used.The outputs are the control solution, the
trajectory solution, and the value of the objective function.

The displayed output forpdmin is shown below. The displayed output forriots depends on the
mathematical programming algorithm with which it is linked (see description ofriots in §6).

Section 3: Using RIOTS_95 8

This is a nonlinear system with 2 states, 1 inputs and 0 parameters,

1 objective function,

0 nonlinear and 0 linear trajectory constraints,

0 nonlinear and 0 linear endpoint inequality constraints,

0 nonlinear and 0 linear endpoint equality constraints.

Initial Scale factor = 0.02937

Method = L-BFGS.

Quadratic fitting off.

Completed 1 pdmin iter ; step = +1.67e+00 (k= -1), ||free_grad|| = 1.47e-01, FFF, cost = 34.40807327949193

Completed 2 pdmin iters; step = +4.63e+00 (k= -3), ||free_grad|| = 1.01e-01, FFF, cost = 31.33402612711411

Completed 3 pdmin iters; step = +2.78e+00 (k= -2), ||free_grad|| = 5.26e-02, FFF, cost = 29.78609937166251

Completed 4 pdmin iters; step = +1.67e+00 (k= -1), ||free_grad|| = 2.25e-02, FFF, cost = 29.30022802876513

Completed 5 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 9.03e-03, FFF, cost = 29.22362561134763

Completed 6 pdmin iters; step = +1.67e+00 (k= -1), ||free_grad|| = 2.61e-03, FFF, cost = 29.20263210973429

Completed 7 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 5.06e-04, FFF, cost = 29.20066785222028

Completed 8 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 1.80e-04, FFF, cost = 29.20060360626269

Completed 9 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 1.86e-05, FFF, cost = 29.20059986273411

Completed 10 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 5.94e-06, FFF, cost = 29.20059981048738

Completed 11 pdmin iters; step = +1.67e+00 (k= -1), ||free_grad|| = 2.07e-06, FFF, cost = 29.20059980021174

Completed 12 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 1.57e-07, FFF, cost = 29.20059979946436

Completed 13 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 5.18e-08, FFF, cost = 29.20059979945842

Completed 14 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 1.16e-08, FFF, cost = 29.20059979945757

Completed 15 pdmin iters; step = +1.00e+00 (k= +0), ||free_grad|| = 3.20e-10, TTF, cost = 29.20059979945753

Completed 16 pdmin iters; step = +6.00e-01 (k= +1), ||free_grad|| = 1.66e-10, TTT, cost = 29.20059979945752

Finished pdmin loop on the 16-th iteration.

Normal termination test satisfied.

The column labeled||free_grad|| gives the value of ||∇ f (�)||H2
, the norm of the gradient of the

objective function. For problems with bounds on the free initial conditions and/or controls, this norm is
restricted to the subspace where the bounds are not active. For problems without state constraints,
||∇ f (�)||H2

goes to zero as a local minimizer is approached.The column with three letters, each aT or F,
indicates which of the three normal termination criterion (see description ofpdmin in §6) are satisfied.
For problems with control or initial condition bounds there are four termination criteria.

We can also solve this problem with quadratic splines (� = 3) by usingN + � − 1 = N + 2 spline coeffi-
cients.

>> u0=zeros(1,N+2);

>> [u2,x2,f2]=pdmin(x0,u0,t,[],[],[],100,4);

We can view the control solutions usingsp_plot which plots spline functions.The trajectory solutions
can be viewed usingplot or sp_plot.

>> sp_plot(t,u1) % Plot linear spline solution

>> sp_plot(t,u2) % Plot quadratic spline solution

Section 3: Using RIOTS_95 9

0 0.5 1 1.5 2 2.5

−1

0

1

2

3

4

5

sp_plot(t,u2)

0 0.5 1 1.5 2 2.5

−1

0

1

2

3

4

5

sp_plot(t,u1)

Section 3: Using RIOTS_95 10

Session 2 (problem with endpoint constraint). The user-defined functions for Problem Rayleigh,
solved in session 1, are written so that it will include the endpoint constraintx1(2. 5)= 0 if there is a
global Matlab variable calledFLAGSset to the value of 1 (seeget_flagsin §4). To solve this problem
with the endpoint constraint we can use eitherriots or aug_lagrng. We must clearsimulate before re-
solving so that the variableFLAGSgets read.

>> global FLAGS

>> FLAGS = 1;

>> clear simulate % Reset simulate so the it will check for FLAGS

>> simulate(0,[]); % Initialize

Loaded 1 flag.

Rayleigh

This is a nonlinear system with 2 states, 1 inputs and 0 parameters,

1 objective function,

0 nonlinear and 0 linear trajectory constraints,

0 nonlinear and 0 linear endpoint inequality constraints,

0 nonlinear and 1 linear endpoint equality constraints.

The output displayed above shows that one flag has been read from the Matlab workspace. Thenext two
lines are messages produced by the user-supplied routines.The last set of data shows the value of the sys-
tem information (see discussion ofneq[] in the description ofinit , §4, and alsosimulate, §5). Since
this problem has a state constraint, we can use eitheraug_lagrng or riots to solve it.

>> x0=[-5;-5];

>> u0=zeros(1,51);

>> t=[0:2.5/50:2.5];

>> u=aug_lagrng(x0,u0,t,[],[],[],100,5,4);

Finished pdmin loop on the 2-nd iteration.

Step size too small.

Completed 1 Outer loop iterations.

Multipliers : -2.81973

Penalties : 10

Constraint Violations: 1.90255

Norm of unconstrained portion of Lagrangian gradient = 0.00646352

Rayleigh

Finished pdmin loop on the 15-th iteration.

Normal termination test satisfied.

Completed 2 Outer loop iterations.

Multipliers : -0.658243

Penalties : 10

Constraint Violations: 0.000483281

Norm of unconstrained portion of Lagrangian gradient = 0.000206008

Rayleigh

Finished pdmin loop on the 8-th iteration.

Normal termination test satisfied.

Section 3: Using RIOTS_95 11

Completed 3 Outer loop iterations.

Multipliers : -0.653453

Penalties : 10

Constraint Violations: -7.91394e-06

Norm of unconstrained portion of Lagrangian gradient = 1.37231e-06

Rayleigh

Finished pdmin loop on the 7-th iteration.

Normal termination test satisfied.

Completed 4 Outer loop iterations.

Multipliers : -0.653431

Penalties : 10

Constraint Violations: -8.6292e-07

Norm of unconstrained portion of Lagrangian gradient = 2.19012e-07

Objective Value : 2 9.8635

Normal termination of outer loop.

The displayed output reports that, at the current solution, the objective value is 29.8635 and the endpoint
constraint is being violated by−8. 63× 10−6. There is some error in these values due to the integration
error of the fixed step-size integration routines.We can get a more accurate measure by using the variable
step-size integration routine to simulate the system with the control solutionu:

>> simulate(1,x0,u,t,5,0); % Simulate system using LSODA

>> simulate(2,1,1) % Evaluate the objective function

ans =

29.8648

>> simulate(2,2,1) % Evaluate the endpoint constraint

ans =

5.3852e-06

The integration was performed with the default value of 1e− 8 for both the relative and absolute local
integration error tolerances.So the reported values are fairly accurate.

Section 3: Using RIOTS_95 12

Session 3 (Problem with control bounds and free final time). This session demonstrates the tran-
scription, explained in §2, of a free final time problem into a fixed final time problem.The transcribed
problem has bounds on the control and free initial states.Also, distrib ute (see §7) is used to improve
integration mesh after an initial solution is found.A more accurate solution will then be computed by re-
solving the problem on the new mesh.

The original problem, Problem Bang, is a minimum-time problem with three states and one input.
This problem is converted into a fixed final time problem using the transcription described in §2.Only
one extra state variable was needed since the problem has time-independent (autonomous) dynamics.The
augmented problem is implemented in the file ‘bang.c’.First we will define the integration mesh and then
the initial conditions.

>> N = 20; % Discretization level

>> T = 10; % Nominal final time

>> t=[0:T/N:T]; % Nominal time interval for maneuver

The nominal time interval is of durationT. Next, we specify a value for � 3, the duration scale factor,
which is the initial condition for the augmented state.The quantityT � 3 represents our guess for the opti-
mal duration of the maneuver.

>> x0=[0 0 1]’; % Initial conditions for augmented system

>> fixed=[1 1 0]’; % Which initial conditions are fixed

>> x0_lower=[0 0 0.1]’; % Lower bound for free initial condition

>> x0_upper=[0 0 10]’; % Upper bound for free initial condition

>> X0=[x0,fixed,x0_lower,x0_upper]

X0 =

0 1.0000 0 0

0 1.0000 0 0

1.0000 0 0.1000 10.0000

The first column ofX0 is the initial conditions for the problem; there are three states including the aug-
mented state.The initial conditions for the original problem werex(0) = (0, 0)T . The initial condition for
the augmented state is set tox0(3) = � 3 = 1 to indicate that our initial guess for the optimal final time is
one times the nominal final time ofT = 10, i.e., � 3T. The second column ofX0 indicates which initial
conditions are to be considered fixed and which are to be treated as free variables for the optimization
program to adjust.A one indicates fixed and a zero indicates free.The third and fourth columns provide
lower an upper bound for the free initial conditions.

>> u0=zeros(1,N+1);

>> [u,x,f]=riots(X0,u0,t,-2,1,[],100,2); % Solve problem; f=x(3,1)=x0(3)

>> f*T % Show the final time.

ans =

29.9813

Section 3: Using RIOTS_95 13

In this call toriots, we hav ealso specified a lower bound of -2 and an upper bound of 1 for all of the con-
trol spline coefficients. Sincewe are using second order splines, this is equivalent to specifying bounds
on the value of the control at the spline breakpoints,i.e. bounds onu(tk). We also specify that the second
order Runge-Kutta integration routine should be used.The objective value f = � 3 is the duration scale
factor. The final time is given by a + (b − a) � 3 = T � 3 = 10f . Here we see that the final time is 29.9813.
A plot of the control solution indicates a fairly broad transition region whereas we expect a bang-bang
solution. We can try to improve the solution by redistributing the integration mesh.We can then re-solve
the problem using the new mesh and starting from the previous solution interpolated onto the new mesh.
This new mesh is stored innew_t , and new_u contains the control solution interpolated onto this new
mesh.

>> [new_t,new_u]=distribute(t,u,x,2,[],1,1); % Re-distribute mesh

redistribute_factor = 7.0711

Redistributing mesh.

>> X0(:,1) = x(:,1);

>> [u,x,f]=riots(X0,new_u,new_t,-2,1,[],100,2);

>> f*10

ans =

30.0000

Notice that before callingriots the second time, we set the initial conditions (the first column ofX0) to
x(:,1) , the first column of the trajectory solution returned from the preceding call toriots. Because� 3

is a free variable in the optimization,x(3,1) is different than what was initially specified forx0(3) .
Sincex(3,1) is likely to be closer to the optimal value for � 3 than our original guess we set the current
guess forX0(3,1) to x(3,1) .

We can see the improvement in the control solution and the solution for the final time.The reported
final time solution is 30 and this happens to be the exact answer. The plot of the control solution before
and after the mesh redistribution is shown below. The circles indicate where the mesh points are located.
The improved solution does appear to be a bang-bang solution.

0 10 20 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

time

Control soln. before redistribution

0 10 20 30
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

time

Control soln. after redistribution

Section 3: Using RIOTS_95 14

Session 4 (Example using outer). This example demonstrates the experimental programouter which
repeatedly adjusts the integration mesh between calls toriots in order to achieve a desired solution accu-
racy. We useouter to solve the Goddard rocket ascent problem implemented in the file ‘goddard.c’.The
Goddard rocket problem is a free-time problem whose objective is to maximize the rocket’s altitude sub-
ject to having a fixed amount of fuel.This problem is particularly difficult because its solution contains a
singular sub-arc.We use an initial guess ofu(t) = 1 for all t so that the rocket starts out climbing and
does not fall into the ground.We will use a second order spline representation and start with a discretiza-
tion level of N = 50. Also,since this is a minimum-time problem, we augmented the system dynamics
with a fourth state that represents the duration scale factor. We start by guessing a duration scale factor of
0.1 by setting� 4 = 0. 1and we specify [0,1] for the nominal time interval. Thusthe nominal final time is
T � 4 = 0. 1.

>> x0=[0 1 1 0.1]’;

>> fixed=[1 1 1 0]’;

>> t=[0:1/50:1];

>> u0=ones(1,51);

Now outer is called with lower and upper control bounds of 0 and 3.5, respectively; no systems parame-
ters; a maximum of 300 iterations for each inner loop; a maximum of 10 outer loop iteration with a maxi-
mum discretization level of N = 500; default termination tolerances; integration algorithm 4 (RK4); and
mesh redistribution strategy 2.

>> [new_t,u,x]=outer([x0,fixed],u0,t,0,3.5,[],500,[10;500],4,[],2);

Goddard

Completed 70 riots iterations. Normal Termination.

Doubling mesh.

========Completed 1 OUTER iteration=========

Norm of Lagrangian gradient = 3.43882e-05

Sum of constraint errors = 4.57119e-09

Objective function value = - 1.01284

Integration error = 1.49993e-06

===

Goddard

Completed 114 riots iterations. Kuhn-Tucker conditions satisfied but sequence did not converge.

========Completed 2 OUTER iterations========

Norm of Lagrangian gradient = 4.64618e-06

Sum of constraint errors = 4.41294e-10

Objective function value = - 1.01284

Integration error = 2.01538e-07

Change in solutions = 0.128447

Control error estimate = 0.0200655

===

Redistribution factor = 2.07904

Redistributing mesh.

New mesh contains 146 intervals. Old mesh contained 100 intervals.

Goddard

Section 3: Using RIOTS_95 15

Completed 206 riots iterations. Kuhn-Tucker conditions satisfied but sequence did not converge.

========Completed 3 OUTER iterations========

Norm of Lagrangian gradient = 2.38445e-08

Sum of constraint errors = 8.49733e-11

Objective function value = - 1.01284

Integration error = 4.67382e-09

Change in solutions = 0.0878133

Control error estimate = 0.000452989

===

Normal Termination.

CPU time = 26.9167 seconds.

The message stating that the Kuhn-Tucker conditions are satisfied but that the sequence did not converge
is a message from NPSOL which is the nonlinear programming algorithm linked withriots in this exam-
ple. Thismessage indicates that, although first order optimality conditions for optimality are satisfied (the
norm of the gradient of the Lagrangian is sufficiently small), the control functions from one iteration of
riots to the next have not stopped changing completely. The sources of this problem are(i) the Goddard
problem is a singular optimal control problem; this means that small changes in the controls over some
portions of the time interval have very little effect on the objective function and(ii) outer calls riots with
very tight convergence tolerances.Because of this, the calls toriots probably performed many more iter-
ations than were useful for the level of accuracy achieved. Choosingbetter convergence tolerances is a
subject for future research.

The optimal control and optimal state trajectories are shown on the next page. Notice that to plot
the optimal control we multiply the time vector new_t by x(4,1) which contains the duration scale
factor. The optimal final time for this problem, sincea = 0 and b = 1, is justx(4,1)=0.1989 . Note
that the final mass of the rocket is 0.6. This is the weight of the rocket without any fuel. Themaximum
height is the negative of the objective function,h* (t) ≈ 1. 01284.

>> sp_plot(new_t*x(4,1),u)

>> plot(new_t*x(4,1),x(1,:))

>> plot(new_t*x(4,1),x(2,:))

>> plot(new_t*x(4,1),x(3,:))

Section 3: Using RIOTS_95 16

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time

Optimal Control for the Goddard Rocket Problem

0 0.1 0.2
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Fuel

0 0.1 0.2
1

1.005

1.01

Altitude

0 0.1 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Velocity

Section 3: Using RIOTS_95 17

4. USER SUPPLIED SYSTEM SUBROUTINES

All of the functions in the description ofOCP in §2 are computed from the user functionsh, l andg; the
derivatives of these functions are computed from the user functionsDh, Dl andDg. Two other user func-
tions,activate andinit , are required for the purpose of passing information to and from RIOTS_95.

Smoothness Requirements. The user-supplied functions must have a certain degree of smoothness.
The smoothness requirement comes about for three reasons.First, the theory of differential equations
requires, in general, thath(t, x, u) be piecewise continuous with respect tot, Lipschitz continuous with
respect tox andu and thatu(⋅) be continuous, in order to ensure the existence and uniqueness of a solu-
tion satisfying the system of differential equations.A finite number of discontinuities inh(⋅, x, u) and u(⋅)
are allowable. Second,the optimization routines needs at least one continuous derivative of the objective
and constraint functionsg(⋅, ⋅) and l (t, ⋅, ⋅). Two continuous derivatives are needed in order for there to be
a chance of superlinear convergence. Thethird reason is that the accuracy of numerical integration of dif-
ferential equations depends on the smoothness ofh(⋅, ⋅, ⋅) and l (⋅, ⋅, ⋅). For a fixed step-size methods with
order s, ∂(s)h(t, x, u)/∂xs and ∂(s)h(t, x, u)/∂us should be continuous (or the (r − 1)-th partial should be
Lipschitz continuous).Furthermore, any discontinuities inh(⋅, x, u(⋅)) or its derivatives should occur only

at integration breakpoints7. Conversely, the user should place integration breakpoints wherever such dis-
continuities occur. The same considerations also hold for the functionl (t, x, u). For variable step-size
integration, h(t, x, u) and l (t, x, u) should have at least continuous partial derivatives of order one with
respect tox andu. Again, any discontinuities inh(⋅, x, u(⋅)) andl (⋅, x, u(⋅)) or its derivatives should only
occur at integration break points.

Constraint Qualifications. A common requirement of mathematical programming algorithms is linear
independence of the active constraints gradients at a solution.It is easy to mathematically specify a valid
constraint in such a way that this condition is violated.For example, consider a scalar constraint of the
form g(u) = 0. Thisconstraint can be specified as

g(u)2 = 0 .

However, d
du (g(u)2) = 2g(u) dg

du. Thus, if this constraint is active at the solutionu* , i.e., g(u*) = 0, then
the gradient of this constraint is zero.So this specification for the constraint violates the constraint quali-
fication. However, if the constraint is specified simply as

g(u) = 0 ,

then the constraint qualification is not violated.

The user functions can be supplied as object code or as M-files.The C-syntax and M-file syntax for
these functions are given below. Because all arguments to the object code versions of the functions are
passed by reference, the object code format is compatible with Fortran. A template for these functions
can be found in the filesystems/template.c . There are also several example problems in thesys-
tems directory. In addition to the user-supplied routines, this section also describes two other functions,
get_flagsandtime_fnc, that are callable by user object code.

7Note that discontinuities inu(t) can only occur at the spline breakpoints,tk.

Section 4: User functions 18

There are three main differences between object code and M-file versions of the user functions:

• The programs in RIOTS_95 execute much faster when object code is used.

• Object code versions of the user functions do not need to assign zero values to array components
which are always zero.M-file versions must set all array values (with the exception ofsys_init).

• There must be a separate M-file for each function with the same name as that function.The names
begin with sys_ followed by the name of the function.For example, sys_Dh.m is the M-file for the
user functionsys_Dh. The directory in which these M-files are located must be in Matlab’s search
path.

• Important: Arrays in Matlab are indexed starting from 1 whereas in C arrays are indexed starting
from 0. For example,neq[4] in C code has an M-file equivalent ofneq(5) .

Section 4: User functions 19

� � ! " # �$! %
&('*),+$-(&.)0/212354(3565&('*)0+ -(&(),/

Purpose

This function is always called once before any of the other user-supplied functions.It allows the user to
perform any preliminary setup needed, for example, loading a data array from a file.

C Syntax

void activate(message)
char **message;

{
*message = "";
/* Any setup routines go here. */

}

M-file Syntax

function message = sys_activate

message = ’’;

Description

If the message string is set, that string will be printed out whenever simulate (form 0) or an optimization
routine is called.It is useful to include the name of the optimal control problem as the message.

See Also: get_flags.

Section 4: User functions 20

" 78" !
+$9:+$),12354(356;+ 9<+$)

Purpose

This function serves two purposes. First,it provides information about the optimal control problem to
RIOTS_95. Second,it allows system parameters to be passed from Matlab to the user-defined functions
at run-time. These system parameters can be used, for instance, to specify constraint levels. Unlike acti-
vate, init may be called multiple times.The arrayneq[] is explained after the syntax.

C Syntax
void init(neq,params)
int neq[];
double *params;
{

if (params == NULL) {
/* Set values in the neq[] array. */

}
else {

/* Read in runtime system parameters. */
}

}

M-file Syntax

function neq = sys_init(params)

% if p arams is NULL then setup neq. Otherwise read system
% parameters in params. In Matlab, arrays are indexed
% starting from 1, so neq(i) corresponds to the C statement
% neq[i-1].
if params == [],

% Each row of neq consists of two columns. The value in
% the first column specifies which piece of system
% information to set. The value in the second column is
% the information. For example, to indicate that the
% system has 5 system parameters, one row in neq should be
% [3 5] s ince neq(3) stores the number of system
% parameters.

% Here we set nstates = 2; ninputs = 1; 1 nonlinear
% endpoint constr.
neq = [1 2 ; 2 1 ; 12 1];

else
% Read in systems parameters from params and store them in
% the global variable sys_params which will be accessible
% to other systems M-files.
global sys_params
sys_params = params;

end

Section 4: User functions 21

" 78" !

Description

When this functions is called, the variableparams will be set to 0 (NULL) if init() is expected to
return information about the optimal control problem via theneq[] array. Otherwise,params is a vec-
tor of system parameters being passed from Matlab to the user’s program. Whenparams==0 , the values
in neq[] should be set to indicate the following:

neq[0] --- Numberof state variables.
neq[1] --- Numberof inputs.
neq[2] --- Numberof system parameters.
neq[3] --- Not used on calls to init().Contains time index.
neq[4] --- Not used on calls to init().Used to indicate which function to evaluate.
neq[5] --- Numberof objective functions (must equal 1).
neq[6] --- Numberof general nonlinear trajectory inequality constraints.
neq[7] --- Numberof general linear trajectory inequality constraints.
neq[8] --- Numberof general nonlinear endpoint inequality constraints.
neq[9] --- Numberof general linear endpoint inequality constraints.
neq[10] --- Numberof general nonlinear endpoint equality constraints.
neq[11] --- Numberof general linear endpoint equality constraints.
neq[12] --- Indicatestype of system dynamics and cost functions:

0 --> nonlinear system and cost,
1 --> linear system,
2 --> linear and time-invariant system,
3 --> linear system with quadratic cost,
4 --> linear and time-invariant with quadratic cost.

Remember that, for M-files,neq(i) is equivalent to the C-code statementneq[i-1] . The values of
neq[] all default to zero exceptneq[5] which defaults to 1. The relationship between the values in
neq[] and the general problem description ofOCP given in §2 is as follows: n = neq[0] ,
m = neq[1] , p = neq[2] , qti = neq[6]+neq[7] , qei = neq[8]+neq[9] and
qee = neq[10]+neq[11] . The locationsneq[3] and neq[4] are used in calls to the other user-
defined functions.

If init setsneq[2]>0 , then init will be called again with params pointing to an array of system
parameters which are provided by the user at run-time.These parameters can be stored in global vari-
ables for use at other times by any of the other user-defined functions.Some examples of useful system
parameters include physical coefficients and penalty function parameters.These parameters are fixed and
will not be adjusted during optimization.Parameters that are to be used as decision variables must be
specified as initial conditions to augmented states= with ˙= = 0.

Notes

1. Control bounds should be indicated separately when calling the optimization routines.Do not
include any simple bound constraints in the general constraints.Similarly, simple bounds on free initial
conditions should be specified on the command line.

2. For nonlinear systems, all constraints involving a state variable are nonlinear functions of the control.
Thus, the constraintg(> , x(b)) = x(b) = 0, while linear in its arguments, is nonlinear with respect tou.
The user does not need to account for this situation, however, and should indicate thatg is a linear con-
straint. RIOTS_95 automatically treats all general constraints for nonlinear systems as nonlinear.

Section 4: User functions 22

?
@ 1*3;4.3;6 @

Purpose

This function serves only one purpose, to computeh(t, x, u), the right hand side of the differential equa-
tions describing the system dynamics.

C Syntax

void h(neq,t,x,u,xdot)
int neq[];
double *t,x[NSTATES],u[NINPUTS],xdot[NSTATES];

{
/* Compute xdot(t) = h(t,x(t),u(t)). */

}

M-file Syntax

function xdot = sys_h(neq,t,x,u)

global sys_params

% xdot must be a column vector with n rows.

Description

On entrance,t is the current time,x is the current state vector andu is the current control vector. Also,

neq[3] is set to the current discrete-time index, k − 1, such thattk ≤ t < tk+1
8.

On exit, the arrayxdot[] should contain the computed value of h(t, x, u). The values of xdot[]
default to zero for the object code version. Notethat for free final time problems the variablet should
not be used because derivatives of the system functions with respect tot are not computed.In the case of
non-autonomous systems, the user should augment the state variable with an extra staterepresenting time
(see transcription for free final time problems in §2).

See Also: time_fnc.

8The index is k − 1 since indexing for C code starts at zero.For M-files,neq (4) = k .

Section 4: User functions 23

A
B 12354(3;6 B

Purpose

This function serves two purposes. Itis used to compute values for the integrands of cost functions,
lo(t, x, u), and the values of state trajectory constraints,l ti (t, x, u).

C Syntax

double l(neq,t,x,u)
int neq[];
double *t,x[NSTATES],u[NINPUTS];

{
int F_num, constraint_num;
double z;

F_num = neq[4];
if (F_num == 1) {

/* Compute z = l(t,x(t),u(t)) for the integrand. */
/* If this integrand is identically zero, */
/* set z = 0 and neq[3] = -1. */

}
else {

constraint_num = F_num - 1;
/* Compute z = l(t,x(t),u(t) for the */
/* constraint_num trajectory constraint. */

}
return z;

}

M-file Syntax

function z = sys_l(neq,t,x,u)
% z i s a s calar.

global sys_params
F_NUM = neq(5);

if F_NUM == 1
% Compute z = l(t,x(t),u(t)) for the objective integrand.

else
constraint_num = F_num - 1;
% Compute z = l(t,x(t),u(t)) for the constraint_num
% traj. constraint.

end

Section 4: User functions 24

A

Description

On entrance,t is the current time,x is the current state vector andu is the current control vector. Also,
neq[3] is set to the current discrete-time index k − 1 such thattk ≤ t < tk+1 (see footnote forh) and
neq[4] is used to indicate which integrand or trajectory constraint is to be evaluated. Notethat, for free
final time problems, the variablet should not be used because derivatives of the system functions with
respect tot are not computed.In this case, the user should augment the state variable with an extra time
state and an extra final-time state as described in §2.

If neq[4] = 1, thenz should be set tol neq[4]
o (t, x, u). If l neq[4]

o (⋅, ⋅, ⋅) = 0 then, besides returning 0,l
(in object code versions) can setneq[3] = − 1 to indicate that the function is identically zero.The latter
increases efficiency because it tells RIOTS_95 that there is no integral cost.Only the functionl is allowed
to modify neq[3]. Regardless of how neq[3] is set,l mustalways return a value even if the returned value
is zero.

If neq[4] > 1, thenz should be set tol neq[4] − 1
ti (t, x, u). If there are both linear and nonlinear trajec-

tory constraints, the nonlinear constraints must precede those that are linear. The ordering of the func-
tions computed byl is summarized in the following table:

C function to compute

neq[4] = 1 neq[4] l Do(t, x, u)

l D ti (t, x, u), nonlinear
l D ti (t, x, u), linear

neq[4] > 1 neq[4] − 1

Section 4: User functions 25

E
F 1*3;4.3;6 F

Purpose

This function serves two purposes. Itis used to compute the endpoint cost functiongo(G , x(b)) and the
endpoint inequality and equality constraintsgei(G , x(b)) and gee(G , x(b)). The syntax for this function
includes an input for the time variable t for consideration of future implementations and should not be
used. Problemsinvolving a cost on the final timeT should use the transcription for free final time prob-
lems described in §2.

C Syntax

double g(neq,t,x0,xf)
int neq[];
double *t,x0[NSTATES],xf[NSTATES];

{
int F_num, constraint_num;
double value;

F_num = neq[4];
if (F_num <= 1) {

/* Compute value of g(t,x0,xf) for the */
/* F_num cost function. */

}
else {

constraint_num = F_num - 1;
/* Compute value g(t,x0,xf) for the */
/* constraint_num endpoint constraint. */

}
return value;

}

M-file Syntax

function J = g(neq,t,x0,xf)
% J i s a s calar.

global sys_params
F_NUM = neq(5);
if F_NUM <= sys_params(6)

% Compute g(t,x0,xf) for cost function.
elseif F_NUM == 2

% Compute g(t,x0,xf) for endpoint constraints.
end

Section 4: User functions 26

E

Description

On entrance,x0 is the initial state vector andxf is the final state vector. The valueneq[4] is used to
indicate which cost function or endpoint constraint is to be evaluated. Nonlinearconstraints must precede
linear constraints.The order of functions to be computed is summarized in the following table:

H function to compute

neq[4] = 1 1 go(I , x(b))

gJ ie(I , x(b)), nonlinear
gJ ie(I , x(b)), linear

1 < neq[4] ≤ 1 + qei neq[4] − 1

gJee(I , x(b)), nonlinear
gJee(I , x(b)), linear

1 + qei < neq[4] ≤ 1 + qei + qee neq[4] − 1 − qei

See Also: time_fnc.

Section 4: User functions 27

K ? L K A L K E
M @ 12354(356 M @
M B 1N3;4.3;6 M B
M F 12354(356 M F

Purpose

These functions provide the derivatives of the user-supplied function with respect to the argumentsx and
u. The programsriots (see §6) can be used without providing these derivatives by selecting the finite-
difference option.In this case, dummy functions must be supplied forDh, Dl andDg.

C Syntax

void Dh(neq,t,x,u,A,B)
int neq[];
double *t,x[NSTATES],u[NINPUTS];
double A[NSTATES][NSTATES],B[NSTATES][NINPUTS];

{
/* The A matrix should contain dh(t,x,u)/dx. */
/* The B matrix should contain dh(t,x,u)/du. */

}

double Dl(neq,t,x,u,l_x,l_u)
int neq[];
double *t,x[NSTATES],u[NINPUTS],l_x[NSTATES],l_u[NINPUTS];

{
/* l_x[] should contain dl(t,x,u)/dx */
/* l_u[] should contain dl(t,x,u)/du */
/* according to the value of neq[4]. */
/* The return value is dl(t,x0,xf)/dt which */
/* is not currently used by RIOTS. */
return 0.0;

}

double Dg(neq,t,x0,xf,g_x0,g_xf)
int neq[];
double *t,x0[NSTATES],xf[NSTATES],J_xf[NSTATES];

{
/* g_x0[] should contain dg(t,x0,xf)/dx0. */
/* g_xf[] should contain dg(t,x0,xf)/dxf. */
/* according to the value of neq[4]. */
/* The return value is dg(t,x0,xf)/dt which */
/* is not currently used by RIOTS. */
return 0.0;

}

Section 4: User functions 28

K ? L K A L K E

M-file Syntax

function [A,B] = sys_Dh(neq,t,x,u)
global sys_params
% A must be an n by n matrix.
% B must be an n by m matrix.

function [l_x,l_u,l_t] = sys_Dl(neq,t,x,u)
global sys_params
% l_x should be a row vector of length n.
% l_u should be a row vector of length m.
% l_t is a scalar---not currently used.

function [g_x0,g_xf,g_t] = sys_cost(neq,t,x0,xf)
global sys_params
% g_x0 and g_xf are row vectors of length n.
% g_t is a scalar---not currently used.

Description

The input variables and the ordering of objectives and constraints are the same for these derivative func-
tions as they are for the corresponding functionsh, l, andg. The derivatives with respect tot are not used
in the current implementation of RIOTS_95 and can be set to zero.The derivatives should be stored in
the arrays as follows:

Function Firstoutput index range Secondoutput index range

Dh A[i][j] =




dh(t, x, u)

dx



 i+1, j+1

i = 0: n − 1

j = 0: n − 1
B[i][j] =





dh(t, x, u)

du



 i+1, j+1

i = 0: n − 1

j = 0: m − 1

Dl l_x[i] =




dl(t, x, u)

dx



 i+1

i = 0: n − 1 l_u[i] =




dl(t, x, u)

du



 i+1

i = 0: m − 1

Dg g_x0[i] =




dg(t, x0, xf)

dx0



 i+1

i = 0: n − 1 g_xf [i] =




dg(t, x0, xf)

dxf



 i+1

i = 0: m − 1

sys_Dh A(i , j) =




dh(t, x, u)

dx



 i , j

i = 1: n

j = 1: n
B(i , j) =





dh(t, x, u)

du



 i , j

i = 1: n

j = 1: m

sys_Dl l_x(i) =




dl(t, x, u)

dx



 i

i = 1: n l_u(i) =




dl(t, x, u)

du



 i

i = 1: m

sys_Dg g_x0(i) =




dg(t, x0, xf)

dx0



 i

i = 1: n g_xf (i) =




dg(t, x0, xf)

dxf



 i

i = 1: m

Note that, forsys_Dh, RIOTS_95 automatically accounts for the fact that Matlab stores matrices trans-
posed relative to how they are stored in C.

Section 4: User functions 29

E % ! O P,� E8Q
F /2),6;R:& F 3

Purpose

This function allows user-supplied object code to read a vector of integers from Matlab’s workspace.

C Syntax

int get_flags(flags,n)
int flags[],*n;

Description

A call to get_flagscausesflags[] to be loaded with up ton integers from the arrayFLAGSif FLAGS
exists in Matlab’s workspace. Itis the user’s responsibility to allocate enough memory inflags[] to
storen integers. Thevalue returned byget_flagsindicates the number of integers read intoflags[] .

The main purpose ofget_flagsis to allow a single system program to be able to represent more than
one problem configuration.The call toget_flagsusually takes place within the user-functionactivate. In
the example below, get_flagsreads in the number of constraints to use for the optimal control problem.

Example
extern int get_flags();
static int Constraints;

void activate(message)
char **message;

{
int n,flags[1];

*message = "Use FLAGS to specify number of constraints.";
n = 1;
if (get_flags(flags,&n) > 0);

Constraints = flags[0];
else

Constraints = 0;
}

Notes

1. It is best to defineFLAGSas a global variable in casesimulate gets called from within an M-file.
This is accomplished by typing

>> global FLAGS

At the Matlab prompt.To clearFLAGSuse the Matlab command

>> clear global FLAGS

2. Sinceactivate is called once only, you must clearsimulate if you want to re-read the values in
FLAGS. To clearsimulate, at the Matlab prompt type

>> clear simulate

3. For M-files, any global variable can be read directly from Matlab’s workspace so an M-file version of
get_flagsis not needed.

Section 4: User functions 30

! " S*% O T 7$�
),+$UV/W65X89:'

Purpose

This function allows user-supplied object code to make calls back to a user-supplied Matlab m-function
calledsys_time_fnc.mwhich can be used to compute a function of time.Call-backs to Matlab are very
slow. Since this function can be called thousand of times during the course of a single system simulation
it is best to provide the time function as part of the object code if possible.

C Syntax

void time_fnc(t,index,flag,result)
int *index,*flag;
double *t,result[];

Syntax of sys_time_fnc.m

function f = sys_time_fnc(tvec)

% tvec = [time;index;flag]
% Compute f(time,index,flag).

Description

If time_fnc is to called by one of the user-functions, then the user must supply an m-function named
sys_time_fnc. The inputstvec(1)=time and tvec(2)=index to sys_time_fnc are related by
tindex ≤ time ≤ tindex+1. The value ofindex passed tosys_time_fncis one greater than the value passed
from time_fnc to compensate for the fact the Matlab indices start from 1 whereas C indices start from 0.
The inputflag is an integer that can be used to select from among different time functions.Even if
flag is not used, itmustbe set to some integer value.

The values in the vector f returned fromsys_time_fncare stored inresult which must have
enough memory allocated for it to store these values.

Section 4: User functions 31

! " S*% O T 7$�

Example

Suppose we want l to compute f (t)x1(t) where f (t) = sin(t) + yd(t) with yd(t) is some pre-computed
global variable in the Matlab workspace. Thenwe can usetime_fnc to computef (t) and use this value to
multiply x[0] :

extern void time_fnc();
double l(neq,t,x,u)

int neq[];
double *t,x[NSTATES],u[NINPUTS];

{
int i,zero;
double result;

i = n eq[3]; /* Discrete-time index. */
zero = 0;
time_fnc(t,&i,&zero,&result); /* Call time_fnc with flag=0. */
return result*x[0]; /* Return f(t)*x1(t). */

}

Here is the function that computesf (t). It computes different functions depending on the value of
flag=t(3) . In our example, it is only called withflag=0 .

function f = sys_time_fnc(t)

global yd % Suppose yd is a pre-computed, global variable.
time = t(1);
index = t(2);
flag = t(3);

if flag == 0
f = y d(time) + sin(time);

else
f = a nother_fnc(time);

end

Section 4: User functions 32

5. SIMULATION ROUTINES

This section describes the central program in RIOTS_95,simulate. All of the optimization programs in
RIOTS_95 are built aroundsimulate which is responsible for computing all function values and gradients
and serves as an interface between the user’s routines and Matlab.

The computation of function values and gradients is performed on the integration mesh

tN =. { tN,k } N+1
k=1 .

This mesh also specifies the breakpoints of the control splines.For any meshtN we define

∆N,k =. tN,k+1 − tN,k .

The values of the trajectories computed bysimulate are given at the timestN,k and are denotedxN,k,
k = 1, . . ,N + 1. Thus,xN,k represents the computed approximation to the true solutionx(tN,k) of the dif-
ferential equatioṅx = h(t, x, u), x(a) = Y . The subscriptN is often omitted when its its presence is clear
from context.

Spline Representation of controls. The controlsu are represented as splines.These splines are given
by

u(t) =
N+Z −1

k=1
Σ [k \ tN ,Z ,k(t)

where [k ∈∈ IRm and \ tN ,Z ,k(⋅) is the k-th B-spline basis element of order] , defined on the knot sequence
formed fromtN by repeating its endpoints] times. Currently, RIOTS_95 does not allow repeated interior
knots. We will denote the collection of spline coefficients by

[=. { [k } N+Z −1
k=1 .

For single input systems,[is a row vector. Those interested in more details about splines are referred to
the excellent reference[6]. The times tk, k = 1, . . . ,N, define the spline breakpoints.On each interval
[tk, tk+1], the spline coincides with an] -th order polynomial.Thus, fourth order splines are made up of
piecewise cubic polynomials and are called cubic splines.Similarly, third order splines are piecewise
quadratic, second order splines are piecewise linear and first order splines are piecewise constant.For
first and second order splines,[k = u(tk). For higher-order splines, the B-spline basis elements are evalu-
ated using the recursion formula in (A2.2a).

The following pages describesimulate. First, the syntax and functionality ofsimulate is presented.
This is followed by a description of the methods used by the integration routines insimulate to compute
function values and gradients.Finally, two functions,check_deriv andcheck_grad, for checking user-
supplied derivative information, and the functionev al_fnc are described.

Section 5: Simulation Routines 33

Q " S2^ A �$! %
35+$UV_ B &(),/

Purpose

This is the central program in RIOTS_95. Theprimary purpose ofsimulate is to provide function values
and gradients of the objectives and constraints using one of six integration algorithms.The optimization
routines in RIOTS_95 are built aroundsimulate. This program also serves as a general interface to the
user-supplied functions and provides some statistical information.

There are currently seven different forms in whichsimulate can be called.Form 1 and form 2
(which is more conveniently accessed usingev al_fnc) are the most useful for the user. The other forms
are used primarily by other programs in RIOTS_95. Theform is indicated by the first argument to simu-
late. Aseparate description for each form is given below.

Form 0

[info,simed] = simulate(0,{params})

Form 1

[f,x,du,dz,p] = simulate(1,x0,u,t,ialg,action)

Form 2

f=simulate(2,f_number,1)
[du,dz,p] = simulate(2,f_number,action)

Form 3

[xdot,zdot] = simulate(3,x,u,t,{f_num,{k}})
[xdot,zdot,pdot] = simulate(3,x,u,t,p,{k})

Form 4

[h_x,h_u,l_x,l_u] = simulate(4,x,u,t,{f_num,{k}})

Form 5

[g,g_x0,g_xf] = simulate(5,x0,xf,tf,{f_num})

Form 6

stats = simulate(6)

Form 7

lte = simulate(7)

Section 5: Simulation Routines 34

Q " S2^ A �$! %

Description of Inputs and Outputs

The following table describes the inputs that are required by the various forms ofsimulate.

Table S1

Input numberof rows numberof columns description

x0 n 19 initial state
xf n 1 final state
u m N + ` − 1 control vector
t 1 N + 1 time vector

tf 1 to 4 1 final time
ialg 1 1 integration algorithm

action 1 1 (see below)
f_num 1 1 (see below)

params (see below) (seebelow) systemparameters

The following table describes the outputs that are returned by the various forms ofsimulate.

Table S2

Output numberof rows numberof columns description
f 1 1 objective or constraint value
x n N + 1 state trajectory
p n N + 1 adjoint trajectory

du m N + ` − 1 control gradient
dx0 n 1 gradient of initial conditions
lte n + 1 N + 1 local integration error

xdot n N + 1 h(t, x, u)
zdot 1 N + 1 l (t, x, u)
h_x n n ∂h / ∂x
h_u n m ∂h / ∂u
l_x 1 n ∂l / ∂x
l_u 1 m ∂l / ∂u

g_x0 1 n ∂g / ∂x0

g_xf 1 n ∂g / ∂x f

If a division by zero occurs during a simulation,simulate returns the Matlab variableNaN, which stands
for ‘‘Not a Number’’, in the first component of each output.This can be detected, if desired, using the
Matlab functionisnan() .

Note: The length of the control vector depends on the control representation.Currently, all of the inte-
gration routines are setup to work with splines of order` defined on the knot sequence constructed from
tN . The current implementation of RIOTS_95 does not allow repeated interior knots.The length (num-
ber of columns) ofu anddu is equal toN + ` − 1 whereN=length(t)-1 is the number of intervals in

9x0 can be a matrix but only the first column is used.

Section 5: Simulation Routines 35

Q " S2^ A �$! %

the integration mesh.The allowable spline orders depends on the integration algorithm,ialg , according
to the following table:

Table S3

IALG Orderof spline representation
0 (discrete) discrete-timecontrols
1 (Euler) a = 1
2 (RK2) a = 2
3 (RK3) a = 2
4 (RK4) a = 2, 3, 4
5 (LSODA) a = 1, 2, 3, 410

6 (LSODA w/0 Jacobians) a = 1, 2, 3, 410

When more than one spline order is possible, the integration determines the order of the spline representa-
tion by comparing the length of the control inputu to the length of the time inputt . If LSODA is called
with ialg=5 , the user must supplydh

dx and dl
dx in the user-functionsDh andDl. If the user has not pro-

grammed these Jacobians, LSODA must be called withialg=6 so that, if needed, these Jacobians will
be computed by finite-differences. Thedifferent integration methods are discussed in detail following the
description of the various forms in whichsimulatecan be called.

Bugs

1. Theremay be a problem with computation of gradients for the variable step-size integration algo-
rithm (ialg=5,6) if the number of interior knotsnknots is different than one (see description of form 1
and gradient computations for LSODA below).

See Also: ev al_fnc

Description of Diff erent Forms

[info,simed] = simulate(0,{params})

This form is used to load system parameters and to return system information.If params is supplied,
simulate will make a call to init so that the user’s code can read in these parameters.Normally params
is a vector. It can be a matrix in which case the user should keep in mind that Matlab stores matrices col-
umn-wise (Fortran style).If the system has no parameters then either omitparams or setparams=[] .
If no output variables are present in this call tosimulate the system message loaded on the call toactivate
and other information about the system will be displayed.

10The maximum spline order allowed by simulate when using LSODA can be increased by changing the pre-compiler define symbol
MAX_ORDERin adams.c.

Section 5: Simulation Routines 36

Q " S2^ A �$! %

The following is a list of the different values ininfo returned bysimulate:

info(1) number of states
info(2) number of inputs
info(3) number of system parameters
info(4) (reserved)
info(5) (reserved)
info(6) number of objective functions
info(7) number of nonlinear trajectory inequality constraints
info(8) number of linear trajectory inequality constraints
info(9) number of nonlinear endpoint inequality constraints
info(10) number of linear endpoint inequality constraints
info(11) number of nonlinear endpoint equality constraints
info(12) number of linear endpoint equality constraints
info(13) type of system (0 through 4)

0: nonlinear dynamics and objective
1: linear dynamics; nonlinear objective
2: linear, time-invariant dynamics; nonlinear objective
3: linear dynamics; quadratic objective
4: linear, time-invariant dynamics; quadratic objective

info(14) number of mesh points used in the most recent simulation

The scalar outputsimed is used to indicate whether a call tosimulate (form 1) has been made.If
simed=1 then a simulation of the system has occurred.Otherwisesimed=0 .

[f,x,du,dx0,p] = simulate(1,x0,u,t,ialg,action)

This form causes the system dynamics,ẋ = h(t, u, x) with x(a) = x0, to be integrated using the integra-
tion method specified byialg (cf. Table S3). Also, the valuef of the first objective function, and possi-
bly its gradients,du anddx0 and the adjointp, can be evaluated. Onlythe first column ofx0 is read.
The strictly increasing time vector t of length N + 1 specifies the integration mesh on [a, b] with
t (1) = a andt (N + 1) = b. The controlu is composed ofm rows of spline coefficients.

The calculations performed bysimulate (form 2) depend on the value ofaction . These actions
are listed in the following table:

Table S4

Action ReturnValues
0 no return values
1 function value f
2 f and system trajectoryx
3 f , x and control and initial condition gradientsdu anddz
4 f , x, du, dzand the adjoint trajectoryp.

Section 5: Simulation Routines 37

Q " S2^ A �$! %

When using the variable step-size method LSODA (ialg = 5,6), the argument ialg can
include three additional pieces of data:

Setting Default Value

ialg(2) Number of internal knots used during gradient computation. 1
ialg(3) Relative integration tolerance. 1e-8
ialg(4) Absolute integration tolerance. 1e-8

The meaning of ‘‘internal knots’’ i s discussed below in the description of gradient computation with
LSODA.

Example

The following commands, typed at the Matlab prompt, will simulate a three state system with two inputs
using integration algorithm RK4 and quadratic splines.The simulation time is froma = 0 until b = 2. 5
and there areN = 100 intervals in the integration mesh.

>> N=100;
>> t = [0:2.5/N:2.5];
>> x0 = [1;0;3.5];
>> u0 = ones(2,N+2); % u0(t)=[1;1];
>> [j,x] = simulate(1,x0,u0,t,4,2);

j = simulate(2,f_number,1)
[du,dx0,p] = simulate(2,f_number,action)

This form allows function values and gradients to be computed without re-simulating the system.A call
to this form must be proceeded by a call tosimulate (form 1). The results are computed from the most
recent inputs (x0,u,t,ialg) for the call tosimulate, form 1. The following table shows the relation-
ship between the value off_number , and the function value or gradient which is computed.

Table S5

f_number range Function Function to be evaluated

1 ≤ f_number ≤ n1 gbo(c , x(b)) + ∫
b

a

l bo(t, x, u)dt d = f_number

n1 < f_number ≤ n2 l b ti (t, x(t), u(t)) d = n%(N + 1) + 1 , t = tk where
n = f_number − n1 − 1 and
k = f_number − n1 − d (N + 1).

n2 < f_number ≤ n3 gbei(c , x(b)) d = f_number − n2

n3 < f_number ≤ n4 gbee(c , x(b)) d = f_number − n3

wheren1 = qo is the number of objective functions,n2 = n1 + qti (N + 1) with qti the number of trajectory
constraints,n3 = n2 + qei with qei the number of endpoint inequality constraints, andn4 = n3 + qee with
qee the number of endpoint equality constraints.The notationn%m means the remainder after division of
n by m (n modulo m). Thus,for trajectory constraints, thee -th constraint (withe = n%(N + 1) + 1) is

Section 5: Simulation Routines 38

Q " S2^ A �$! %

evaluated at timetk.

If action=2 , only du anddx0 are returned.If action=3 , du , dx0 andp are returned.The
function,ev al_fnc, provides a convenient interface to this form.

[xdot,zdot] = simulate(3,x,u,t,{f_num,{k}})
[xdot,zdot,pdot] = simulate(3,x,u,t,p,{k})

This form evaluates (as opposed to integrates) the following quantities:ẋ = h(t, x, u), ż = l fo(t, x, u), and

ṗ = − (∂h(t,x,u)T

∂x p + ∂l (t,x,u)T

∂x) at the times specified byt . These functions are evaluated at the points int .
If f_num is specified,g = f_num , otherwise g = 1. The function l f (⋅, ⋅, ⋅) is evaluated according to
Table S5 above. The last input,k , can only be supplied ift is a single time point.It is used to indicate
the discrete-time interval containingt . That is,k is such thattk ≤ t < tk+1. If k is given, l is called with
neq[3] = k − 1. In this call, the values inu represent pointwise values ofu(t), not its spline coeffi-
cients. Theinputsx andu must have the same number of columns ast .

[h_x,h_u,l_x,l_u] = simulate(4,x,u,t,{f_num,{k}})

This form evaluates∂h(t,x,u)
∂x , ∂h(t,x,u)

∂u , ∂l h (t,x,u)
∂x , and ∂l h (t,x,u)

∂x . In this call,t must be a single time point.If
f_num is specified,g = f_num , otherwiseg = 1. Thefunction l f (⋅, ⋅, ⋅) is evaluated according to Table
S5 above. The last input,k , indicates the discrete-time interval containingt . That is,k is such that
tk ≤ t < tk+1. If k is given, l is called withneq[3] = k − 1. In this call, the values inu represent point-
wise values ofu(t), not its spline coefficients.

[g,g_x0,g_xf] = simulate(5,x0,xf,tf,{f_num})

This form evaluatesgf (x0 , xf), ∂gh (x0 ,xf)
∂x0 , and ∂gh (x0 ,xf)

∂xf . If f_num is specified,g = f_num . Otherwise
g = 1. Theinput tf gets passed to the user functionsg andDg (see descriptions in §2) for compatibility
with future releases of RIOTS_95.

stats = simulate(6)

This form provides statistics on how many times the functionsh andDh have been evaluated, how many
times the system has been simulated to produce the trajectoryx, and how many times functions or the
gradients off f (⋅, ⋅), gf (⋅, ⋅) or l f ti (⋅, ⋅, ⋅) hav ebeen computed.The following table indicates what the com-
ponents ofstats represent:

Section 5: Simulation Routines 39

Q " S2^ A �$! %

Table S6

Component Meaning
stats(1) Number of calls toh.
stats(2) Number of calls toDh.
stats(3) Number of simulations.
stats(4) Number of function evaluations.
stats(5) Number of gradient evaluations.

lte = simulate(7)

This form, which must be preceded by a call tosimulate (form 1) with ialg=1,2,3,4 , returns esti-
mates of the local truncation error for the fixed step-size Runge-Kutta integration routines.The local
truncation error is given, for k = 1, . . . ,N, by

ltek = 


xk(tk+1) − xN,k+1

zk(tk+1) − zN,k+1




,

wherexk(tk+1) and zk(tk+1) are the solutions of



ẋ

ż



= 


h(x, u)

l1
o(t, x, u)




,
x(tk) = x N,k

z(tk) = 0
, t ∈∈ [tk, tk+1] .

andxN,k+1 andzN,k+1 are the quantities computed by one Runge-Kutta step fromxN,k and 0, respectively.
These local truncations errors are estimated using double integration steps as described in[4, Sec. 4.3.1].
The local truncation error estimates are used bydistrib ute (see description in §7) to redistribute the inte-
gration mesh points in order to increase integration accuracy.

Section 5: Simulation Routines 40

Q " S2^ A �$! %

IMPLEMENTATION OF THE INTEGRATION ROUTINES

Here we discuss some of the implementation details of the different integration routines built into simu-
late.

System Sim ulation

System simulation is accomplished by forward integration of the differential equations used to describe
the system.There are four fixed step-size Runge-Kutta integrators, one variable step-size integrator
(LSODA), and one discrete-time solver. The RK integrators and LSODA produce approximate solutions
to the system of differential equation

ẋ = h(t, x, u) , x(a) = i
ż = l (t, x, u) , z(a) = 0

on the interval t ∈∈ [a, b]. The four Runge-Kutta integrators are Euler’s method, improved Euler, Kutta’s
formula and the classical Runge-Kutta method (see7 or [4, Sec. 4.2]) and are of order 1, 2, 3 and 4
respectively. The discrete-time integrator solves

xk+1 = h(tk, xk, uk) , x0 = i
zk+1 = l (tk, xk, uk) , z0 = 0

for k = 1, . . . ,N.

The variable step-size integrator is a program called LSODA [8,9]. LSODA can solve both stiff and
non-stiff differential equations.In the non-stiff mode, LSODA operates as an Adams-Moulton linear,
multi-step method.If LSODA detects stiffness, it switches to backwards difference formulae.When

operating in stiff mode, LSODA requires the system Jacobians∂h(t,x,u)
∂x and ∂l (t,x,u)

∂x . If the user has not
supplied these functions, LSODA must be called usingialg=6 so that these quantities will be computed
using finite-difference approximations.Otherwise, LSODA should be called usingialg=5 so that the
analytic expressions for these quantities will be used.

The integration precision of LSODA is controlled by a relative tolerance and an absolute tolerance.
These both default to 1e− 8 but can be specified inialg(3:4) respectively (see description ofsimu-
late, form 1). The only non-standard aspect of the operation of LSODA by simulate is that the integra-
tion is restarted at every mesh pointtk due to discontinuities in the control splineu(⋅), or its derivatives, at
these points.

Gradient Ev aluation

In this section we discuss the computation of the gradients of the objective and constraint functions of
problemOCP with respect to the controls and free initial conditions.These gradients are computed via
backwards integration of the adjoint equations associated with each function.

Discrete-time Integrator. For the discrete-time integrator, the adjoint equations and gradients are given
by the following equations.For the objective functions,j ∈∈ qo, k = N, . . . , 1,

pk = h x(tk, xk, uk)T pk+1 + l k x(tk, xk, uk)T ; pN+1 =
∂gk (i , xN+1)T

∂xN+1

Section 5: Simulation Routines 41

Q " S2^ A �$! %





df l (m , u)

du





T

k

= hu(tk, xk, uk)T pk+1 + l lu(tk, xk, uk)T

df l (m , u)T

d m =
∂gl (m , xN+1)T

∂ m + p0 .

For the endpoint constraints,n ∈∈ qei ∩ qee, k = N, . . . , 1,

pk = h x(tk, xk, uk)T pk+1 ; pN+1 =
∂gl (m , xN+1)T

∂xN+1





dgl (m , xN+1)

du





T

k

= hu(tk, xk, uk)T pk+1

dgl (m , xN+1)T

d m =
∂gl (m , xN+1)T

∂ m + p1 .

For the trajectory constraints,n ∈∈ qti , evaluated at the discrete-time index l ∈∈ { 1, . . . ,N + 1 } ,

pk = h x(tk, xk, uk)T pk+1 , k = l − 1, . . . , 1 ; pl = l l x(t l , xl , ul)
T





dll (tk, xk, uk)

du





T

k

=





î

hu(tk, xk, uk)T pk+1

l lu(tk, xk, uk)T

0

k = 1, . . . ,l − 1

k = l

k = l + 1, . . . ,N

dll (t l , xl , ul)
T

d m = p1 .

Runge-Kutta Integrators. For convenience, we introduce the notation

uk, j = u(o k,i j
) , k = 1, . . . ,N , j = 1, . . ,r ,

where

o k,i =. tk + ci∆k ,

and ci ∈∈ [0, 1] are parameters of the Runge-Kutta integration method.For RK1, RK2 and RK3,r = s
where s = 1, 2, 3 repespectively and i j = j . Howev er, RK4 has a repeated control sample,cf. [4, Sec.
2.4], we have r = 3, i1 = 1, i2 = 2 and i3 = 4.

The computation of the control gradients is a two-step process.First, the gradient off (m , u) with
respect to the control samplesuk, j , k = 1, . . . ,N, j = 1, . . . ,r , wherer is the number of control samples
per integration interval, and with respect tom is computed.Second, the gradient with respect to the spline
coefficients, p k, of u(t) is computed using the chain-rule as follows,

df (m , u)

d p k
=

N

i=1
Σ

r

j=1
Σ df (m , u)

dui , j

dui , j

d p k
, k = 1, . . . ,N + q − 1 ,

where q is the order of the spline representation.Most of the terms in the outer summation are zero
because the spline basis elements have local support.The quantity

Section 5: Simulation Routines 42

Q " S2^ A �$! %
dui , j

d r k
= s tN ,r ,k(t i , j)

is easily determined from a recurrence relation for the B-spline basis[6].

Due to the special structure of the specific RK methods used bysimulate there is a very efficient
formula, discovered by Hager[10] for computingdf /dui , j . We hav eextended Hager’s formula to deal
with the various constraints and the possibility of repeated control samples (see Chapter 2.4).To describe
this formula, we use the notation fork = 1, . . . ,N − 1 and j = 1, . . . ,s,

Ak, j =. hx(t k, j , yk, j , u(t k, j))
T ,

Bk, j =. hu(t k, j , yk, j , u(t k, j))
T ,

lxuk, j =. l u x(t k, j , yk, j , u(t k, j))
T ,

and

luu k, j =. l uu(t k, j , yk, j , u(t k, j))
T .

where, withak, j parameters of the Runge-Kutta method,

yk,1 =. xk , yk, j =. xk + ∆k

j−1

m=1
Σ a j ,mh(yk,m, u(t k,m)) , j = 2, . . . ,s .

The quantitiesyk, j are estimates ofx(t k, j).

The gradients of the objective and constraint functions with respect to the controlsuk, j and the ini-
tial conditionsv are given as follows. Inwhat follows as+1, j =. b j , qk,s = qk+1,0 and the standard adjoint
variables,pk, are given by pk = qk,0. For the objective functions, we have for w ∈∈ qo, k = N, . . . , 1,

qN+1,0 =
∂gu (v , xN+1)T

∂xN+1
,

qk, j = qk+1,0 + ∆k

s

m= j+1
Σ as− j+1,s−m+1(Ak,mqk,m + lxuk,m+1) , j = s− 1,s− 2, . . . , 0





df u (v , u)

du





T

k, j

= b j ∆k


Bk, j qk, j + l u k, j




, j = 1, . . . ,s ,

df u (v , u)T

d v =
∂gu (v , xN)T

∂ v + q0
1 ,

For the endpoint constraints, we have for w ∈∈ qei ∩ qee, k = N, . . . , 1,

qk, j = qk+1,0 + ∆k

s

m= j+1
Σ as− j+1,s−m+1Ak,mqk,m , j = s− 1,s− 2, . . . , 0; qN+1,0 =

∂gu (v , xN+1)T

∂xN+1
,





dgu (v , xN+1)

du





T

k, j

= b j ∆kBk, j qk, j , j = 1, . . . ,s

Section 5: Simulation Routines 43

Q " S2^ A �$! %

dgx (y , xN+1)T

d y =
∂gx (y , xN+1)T

∂ y + q0
1 ,

For the trajectory constraints,z ∈∈ qti , evaluated at the the discrete-time index l ∈∈ { 1, . . . ,N + 1 } ,

q0
l = l x x(t l , xl , u({ l ,s))

T

qk, j = qk+1,0 + ∆k

s

m= j+1
Σ as− j+1,s−m+1Ak,mqk,m , k = l − 1, . . , 1, j = s− 1,s− 2, . . . , 0;





dlx (tk, xk, u(tk))

du





T

k, j

=





î

b j ∆kBk, j qk, j

l xu(tk, xk, u({ k, j))

0

k = 1, . . . ,l − 1 , j = 1, . . . ,s

k = l ; j = 0 if l ≤ N, else j = s

otherwise

dlx (t l , xl , u(t l))
T

d y = q0
1 .

For method RK4, we have the special situation that{ k,2 = { k,3 for all k becausec2 = c3 = 1/2.
Hence, there is a repeated control sample:uk,2 = u({ k,2) = u({ k,3). Thus, for any function f , the
derivatives with respect touk,1, uk,2 anduk,3 are given by the expressions,

df

duk,1
=





df

du



 k,1

,
df

duk,2
=





df

du



 k,2

+




df

du



 k,3

,
df

duk,3
=





df

du



 k,4

.

Variable Step-Size Integrator (LSODA). For the variable step-size integrator, LSODA, the adjoint
equations and gradients are given by the equations below which require knowledge of x(t) for all

t ∈∈ [a, b]. As in [11], x(t) is stored at the internal knots{ tk + i
nknots+1 ∆k } nknots+1,N+1

i=0,k=1 during the forward

system integration. By default, nknots = 1, but the user can specifynknots ≥ 1 by setting
ialg(2) = nknots (see description ofsimulate, form 1). Then, during the computation of the adjoints

and gradients,x(t) is determined by evaluating the quintic11 Hermite polynomial which interpolates
(t, x(t), ẋ(t)) at the nearest three internal knots within the current time interval [tk, tk+1]. Usually
nknots = 1 is quite sufficient.

We now giv e the formulae for the adjoints and the gradients.It is important to note that, unlike the
fixed step-size integrators, the gradients produced by LSODA are not exact. Rather, they are numerical
approximations to the continuous-time gradients for the original optimal control problem.The accuracy
of the gradients is affected by the integration tolerance and the number of internal knots used to store val-
ues ofx(t). Undernormal circumstances, the gradients will be less accurate than the integration toler-
ance. For the objective functions,z ∈∈ qo,

11The order of the Hermite polynomial can be changed by setting the define’d symbol ORDER in the code adams.c.If the trajectories are
not at least five time differentiable between breakpoints, then it may be helpful to reduce the ORDER of the Hermite polynomials and increase
nknots.

Section 5: Simulation Routines 44

Q " S2^ A �$! %

ṗ = − (hx(t, x, u)T p + l | x(t, x, u)T) , t ∈∈ [a, b] ; p(b) =
∂g| (} , x(b))T

∂x(b)





df | (} , u)

d ~ k





T

= ∫
b

a
(hu(t, x, u)T p(t) + l |u(t, x, u)T) � tN ,� ,k(t)dt , k = 1, . . . ,N + � − 1

df | (} , u)T

d } =
∂g| (} , x(b))T

∂ } + p(a) .

For the endpoint constraints,� ∈∈ qei ∩ qee,

ṗ = − hx(t, x, u)T p , t ∈∈ [a, b] ; p(b) =
∂g| (} , x(b))T

∂x(b)





dg| (} , u)

d ~ k





T

= ∫
b

a
hu(t, x, u)T p(t) � tN ,� ,k(t)dt , k = 1, . . . ,N + � − 1

dg| (} , u)T

d } =
∂g| (} , x(b))T

∂ } + p(a) .

For the trajectory constraints,� ∈∈ qti , evaluated at timet = t l , l ∈∈ { 1, . . . ,N + 1 } ,

ṗ = − hx(t, x, u)T p , t ∈∈ [a, t l] ; p(t l) = l | x(t l , x(t l), u(t l))
T





dl| (t l , xl , u(t l))

d ~ k





T

= ∫
tl

a
hu(t, x, u)T p(t) � tN ,� ,k(t)dt , k = 1, . . . ,N + � − 1

dl| (t l , xl , u(t l))
T

d } = p(a) .

The numerical evaluation of the integrals in these expressions is organized in such a way that they are
computed during the backwards integration of ṗ(t). Also, the computation takes advantage of the fact
that the integrands are zero outside the local support of the spline basis elements� tN ,� ,k(t).

Section 5: Simulation Routines 45

� ? % � � O �$% � " #
' @ /2'*�:65��/W�;+$-

Purpose

This function provides a check for the accuracy of the user-supplied derivatives Dh, Dl andDg by com-
paring these functions to derivative approximations obtained by applying forward or central finite-
differences to the corresponding user-supplied functionh, l andg.

Calling Syntax

[errorA,errorB,max_error] = check_deriv(x,u,t,{params},{index},
{central},{DISP})

Description

The inputsx ∈∈ IRn, u ∈∈ IRm and t ∈∈ IR giv e the nominal point about which to evaluate the derivatives
hx(t, x, u), hu(t, x, u), l � x(t, x, u), l �u(t, x, u), g� x(t, x, u) and g�u(t, x, u). If there are system parameters (see
description ofinit in §3), they must supplied by the inputparams . If specified,index indicates the dis-
crete-time index for which t(index) ≤ t ≤ t(index+1) . This is only needed if one of the user-
supplied system functions uses the discrete-time index passed inneq[3] .

The error in each derivative is estimated as the difference between the user-supplied derivative and
its finite-difference approximation.For a generic functionf (x), this error is computed, withei the i-th
unit vector and� i a scalar, as

E =
f (x) − f (x + � i ei)� i

−
df (x)

dx
ei ,

if forward differences are used, or

E =
f (x − � i ei) − f (x + � i ei)

2� i
−

df (x)

dx
ei ,

if central differences are used.The perturbation size is� i = � 1/3
machmax { 1, |xi | } . Central difference

approximations are selected by setting the optional argumentcentral to a non-zero value. Otherwise,
forward difference approximations will be used.

The first term in the Taylor expansion ofE with respect to� i is of order isO(� 2
i) for central differ-

ences andO(� i) for forward differences. Moredetails can be found in[12, Sec. 4.1.1].Thus, it is some-
times useful to perform both forward and central difference approximations to decide whether a large dif-
ference between the derivative and its finite-difference approximations is due merely a result of scaling or
if it is actually due to an error in the implementation of the user-supplied derivative. If the derivative is
correct thenE should decrease substantially when central differences are used.

If DISP=0 , only the maximum error is displayed.

The outputserrorA anderrorB return the errors forhx(t, x, u) and hu(t, x, u) respectively. The
outputmax_error is the maximum error detected for all of the derivatives.

Section 5: Simulation Routines 46

� ? % � � O �$% � " #

Example

The following example compares the output fromcheck_deriv using forward and central finite-
differences. Thederivatives appear to be correct since the errors are much smaller when central differ-
ences are used.First forward differences are used, then central differences.
>> check_deriv([-5;-5],0,0);
==

System matrices:
Error in h_x =

1.0e-04 *
0 - 0.0000

-0.0000 -0.6358

Error in h_u =
1.0e-10 *

0
0.9421

For function 1:
Error in l_x =

1.0e-04 *

-0.3028 0

Error in l_u = 6.0553e-06

For function 1:
Error in g_x0 = 0 0

Error in g_xf = 0 0

Maximum error reported is 6.35823e-05.
==

>> check_deriv([-5;-5],0,0,[],0,1);
==

System matrices:
Error in h_x =

1.0e-10 *
0 - 0.0578

-0.2355 -0.3833

Error in h_u =
1.0e-10 *

0
0.9421

For function 1:
Error in l_x =

1.0e-10 *

0.5782 0

Error in l_u = 0

For function 1:
Error in g_x0 = 0 0

Error in g_xf = 0 0

Maximum error reported is 9.42135e-11.
==

Section 5: Simulation Routines 47

� ? % � � O E � � �
' @ /2'*�:6 F �;&(�

Purpose

This function checks the accuracy of gradients of the objective and constraint functions, with respect to
controls and initial conditions, as computed bysimulate, forms 1 and 2.It also provides a means to indi-
rectly check the validity of the user-supplied derivativeDh, Dl andDg.

Calling Syntax

max_error = check_grad(i,j,k,x0,u,t,ialg,{params},{central},
{DISP})

Description

The inputx0 , u, t andialg specify the inputs to the nominal simulationsimulate(1,x0,u,t,ialg,0)prior
to the computation of the gradients.The gradients are tested at the discrete-time indices as specified in
the following table:

Index Purpose

i Spline coefficient controlu that will be perturbed.If i=0 , the
gradients with respect tou will not be checked.

j Index of initial state vector, � , that will be perturbed.If j=0 , the
gradients with respect to the� will not be checked.

k For each trajectory constraints,k indicates the discrete-time in-
dex, starting withk=1 , at which the trajectory constraints will be
evaluated. Ifk=0 , the trajectory constraint gradients will not be
checked.

The finite-difference computations are the same as described forcheck_deriv.

If there are system parameters (see description ofinit , § 3), these must be given by the input
params . Central difference approximations will be used if a non-zero value forcentral is specified;
otherwise forward differences will be used.If DISP=0 , only the maximum error is displayed.This is
particularly useful if check_deriv is used in a loop on any of the indices i,j,k . The output
max_error is the maximum error detected in the gradients.

Example

The following example checks the tenth component of the control gradient and the second component of
initial condition gradient as computed by RK2 using central differences. Theintegration is performed on
the time interval t ∈∈ [0, 2. 5] with N = 50 intervals. Thegradients are evaluated for the second order
spline controlu(t) = 1 for all t (i.e., � k = 1, k = 1, . . . ,N + 1).

Section 5: Simulation Routines 48

� ? % � � O E � � �
>> t = [0:2.5/50:2.5];
>> u = ones(1,51);
>> x0 = [-5;-5];
>> check_grad(10,2,0,x0,u,t,2,[],1);

==
Using perturbation size of 6.05545e-06

Evaluating function 1.
error_u = 1.84329e-09
error_x0 = -4.88427e-11
Relative error in control gradient = 2.52821e-07%
Gradient OK

Relative error in x0 gradient = 1.14842e-09%
Gradient OK

Evaluating endpoint constraint 1.
error_u = -5.46737e-11
error_x0 = -5.98271e-12
Relative error in control gradient = 6.04337e-08%
Gradient OK

Relative error in x0 gradient = 1.87846e-09%
Gradient OK
Maximum error reported is 1.84329e-09.
==

Section 5: Simulation Routines 49

% # � A O T 7$�
/2-(& B 6;X$9<'

Purpose

This function provides a convenient interface tosimulate (form 2), for computing function and gradient
values. Asystem simulation must already have been performed for this function to work.

Calling Syntax

[f,du,dx0,p] = eval_fnc(type,num,k)

Description of Inputs

type A string that specifies the type of function to be evaluated. Thechoices are

’obj’ Objective function
’ei’ Endpoint inequality constraint
’ee’ Endpoint equality constraint

’traj’ Trajectory constraint

num Specifies� for the function of the type specified bytype is to be evaluated.

k For trajectory constraints only. Specifies the index for the time,tk, in the current integration
mesh at which to evaluate the trajectory constraint.If k is a vector, the trajectory constraint
will be evaluated at the times specified by each mesh point index in k .

Description of Outputs

f The function value.

du The gradient with repect tou. Not computed for trajectory constraints ifindex is a vector.

dx0 The derivative of the function with respect to initial conditions,� . Not computed for trajec-
tory constraints ifindex is a vector.

p The adjoint trajectory. Not computed for trajectory constraints ifindex is a vector.

Examples

The following examples assume that a simulation has already been performed on a system that has at least
two endpoint equality constraints and a trajectory constraint.The first call toev al_fnc evaluates the sec-
ond endpoint equality constraint.

Section 5: Simulation Routines 50

% # � A O T 7$�
>> f=eval_fnc(’ee’,2)

f =

0.2424

Since equality constraints should evaluate to zero, this constraint is violated.This next call evaluates the
first trajectory constraint at the timestk, k = 5, . . . , 15,in the current integration mesh.

>> eval_fnc(’traj’,1,5:15)

ans =

Columns 1 through 7

-1.0182 -1.0222 -1.0258 -1.0288 -1.0311 -1.0327 -1.0338

Columns 8 through 11

-1.0335 -1.0318 -1.0295 -1.0265

Since inequality constraints are satisfied if less than or equal to zero, this trajectory constraint is satisfied
at these specified points.

Section 5: Simulation Routines 51

6. OPTIMIZATION PROGRAMS

This section describes the suite of optimization programs that can be used to solve various cases of the
optimal control problemOCP. These programs seek local minimizers to the discretized problem.The
most general program isriots which converts OCP into a mathematical program which is solved using
standard nonlinear programming techniques.Besides being able to solve the largest class of optimal con-
trol problems,riots is also the most robust algorithm amongst the optimization programs available in
RIOTS_95. However, it can only handle medium size problems.The size of a problem, the number of
decision variables, is primarily determined by the number of control inputs and the discretization level.
What is meant by medium size problems is discussed in the description ofriots.

The most restrictive program ispdmin which can solve optimal control problems with constraints
consisting of only simple bounds on� andu. State constraints are not allowed. Thealgorithm used by
pdmin is the projected descent method described in[4, Chap. 3]. Because of the efficiency of the pro-
jected descent method,pdmin can solve large problems.

Problems that have, in addition to simple bounds onu and � , endpoint equality constraints can be
solved by aug_lagrng. The algorithm is a multiplier method which relies uponpdmin to solve a
sequence of problems with only simple bound constraints.This program provides a good example of how
the toolbox style of RIOTS_95 can be used to create a complex algorithm from a simpler one.Currently,
the implementation ofaug_lagrng is fairly naive and has a great deal of room left for improvement.
Also, it would be relatively straightforward to add an active set strategy toaug_lagrng in order to allow it
to handle inequality constraints.

Finally, the programouter is an experimental outer loop which repeatedly callsriots to solve a
sequence of increasingly accurate discretizations (obtained by calls todistrib ute) of OCP in order to effi-
ciently compute the optimal control to a specified accuracy.

Choice of Integration and Spline Or ders.

Each of these optimization programs requires the user to select an integration routine and the order of the
spline representation for the controls.There are several factors involved in these selections.Some of
these factors are discussed below and summarized in the Table O2 that follows. Consult[4, Chap 4.2] for
a more in-depth discussion.

Fixed step-size integration. The first consideration is that, for each of the fixed step-size Runge-Kutta
methods, there is a limit to how much accuracy can be obtained in the control solutions at certain discrete
time points. The accuracy, ||uN* − u* ||, of the control splines can not be greater than the solutions at these
time points. The order of the accuracy of spline solutions with respect to the discretization level for
unconstrainedproblems is given in the following table. The quantity∆ used in this table is defined as
∆ =. maxk tN,k+1 − tN,k. The third column is a reminder of the spline orders that are allowed bysimulate
for each RK method.

Section 6: Optimization Programs 52

Table O1

RK Method Order of Accuracy Allowable Spline Orders

1 O(∆1) 1
2 O(∆2) 2
3 O(∆2) 2
4 O(∆3) 2, 3, 4

While it is possible with some optimal control problems to achieve higher order accuracies, this is a non-
generic situation.The order of spline representation should therefore not exceed the accuracies listed in
the second column of this table.Thus, for RK4, even though cubic splines are allowed there is usually no
reason to use higher than quadratic splines (� = 3).

The orders listed in the above table are usually only achieved for unconstrained problems.For prob-
lems with control constraints it is typically impossible to achieve better than first order accuracy. This is
ev en true if the discontinuities in the optimal control are known a priori since the locations of these dis-
continuities will not coincide with the discontinuities of the discretized problems.For problems with state
constraints, the issue is more complicated.In general, we recommend using second order splines (except
for Euler’s method) for problems with control and/or trajectory constraints.Even if first order accuracy is
all that can be achieved, there is almost no extra work involved in using second order splines.Further-
more, second order splines will often give somewhat better results than first order splines even if the accu-
racy is asymptotically limited to first order.

A second consideration is that the overall solution error is due to both the integration error and the
error caused by approximating an infinite dimensional function, the optimal control, with a finite dimen-
sional spline.Because of the interaction of these two sources of error and the fact that the accuracy of the
spline representations is limited to the above table, improving the integration accuracy by using a higher
order method does not necessarily imply that the accuracy of the solution to the approximating problem
will improve. Howev er, even if the spline accuracy is limited to first order, it is often the case that the
integration error, which is of orderO(∆s), wheres is the order of the RK method, still has a significantly
greater effect on the overall error than the spline error (especially at low discretization levels). This is
partly due to the fact that errors in the control are integrated out by the system dynamics.Thus, it is often
advantageous to use higher-order integration methods even though the solution error is asymptotically
limited to first order by the spline approximation error.

The importance of the RK order, in terms of reducing the overall amount of computational work
required to achieve a certain accuracy, depends on the optimization program being used.Each iterations
of riots requires the solution of one or more dense quadratic program.The dimension of these quadratic
programs is equal to the number of decision parameters (which ism(N + � − 1) plus the number of free
initial conditions). Because the work required to solve a dense quadratic program goes up at least cubi-
cally with the number of decision variables, at a certain discretization level most of the work at each itera-
tion will be spent solving the quadratic program.Thus, it is usually best to use the fourth order RK
method to achieve as much accuracy as possible for a given discretization level. An exception to this rule
occurs when problemOCP includes trajectory constraints.Because a separate gradient calculation is per-
formed at each mesh point for each trajectory constraint, the amount of work increases significantly as the
integration order is increased.Thus, it may be beneficial to use a RK3 or even RK2 depending on the
problem.

On the other hand, for the optimization programspdmin and aug_lagrng (which is based on
pdmin) the amount of work required to solve the discretized problem is roughly linear in the number of

Section 6: Optimization Programs 53

decision variables which is basically proportional to the discretization level N. The amount of work
required to integrate the differential equations is linearly proportional toNs where s the order of the
Runge-Kutta method.Since the integration error is proportional to 1/ Ns, if not for the error for the
spline approximation it would always be best to use RK4.However, because there is error from the finite
dimensional spline representation, it does not always pay to use the highest order RK method.If, roughly
speaking, the error from the control representation contributes to the overall error in the numerical solu-
tion to larger extent than the integration error (note that the spline error and the integration error are in dif-
ferent units) then it is wasteful to use a higher order RK method.This usually happens only at high dis-
cretization levels.

The relative effect of the spline error versus the integration error depends on the nature of the system
dynamics and the smoothness of the optimal control.Unfortunately, this is hard to predict in advance.
But a sense of the balance of these errors can be obtained by solving, if possible, the problem at a low dis-
cretization level and viewing the solution usingsp_plot and usingsimulate (form 7) or est_errors to
obtain an estimate of the integration error.

There is a third consideration for selecting the integration order. For some problems with particu-
larly nonlinear dynamics, in may not be possible integrate the differential equation if the discretization
level is too small. In these cases, the minimum discretization level needed to produce a solution is small-
est when using RK4.For some problems, it may not be possible to achieve an accurate solution of the
differential equation at any reasonable discretization level. For these problems, the variable step-size inte-
gration method, discussed next, will have to be used.

Regardless of the integration method used, higher order splines (� > 2) should not be used unless
the optimal control is sufficiently smooth.Of course, the optimal control is not known in advanced. Gen-
erally, though, when solving control and/or trajectory constrained problems, second order splines should
be used (except with Euler’s method which can only use first order splines) as per the discussion above.
For other problems being integrated with RK4, it may be advantageous to use quadratic splines.

The following table provides a set of basic guidelines for the selection of the integration method and
the spline order for solving different classes of problems.These choices may not be ideal for any specific
problem but they are generally acceptable for most problems.

Table O2

RK order spline order
(ialg) (�)

type of problem optimization program

4 (N small) 3(N small)
2 (N large) 2(N large)

pdmin/aug_lagrng

riots 4 3

no control nor trajectory con-
straints

4 (N small)
2 (N large)

pdmin/aug_lagrng

riots 4
control constraints 2

trajectory constraints riots 212 2

Section 6: Optimization Programs 54

Variable step-size integration. From the point of view of integrating differential equations, it is much
more efficient to use a variable step-size integration routine than a fixed step-size method.However, this
is usually not the case when solving optimal control problems.There are three basic reasons for this.
First, the overall solution accuracy cannot exceed the accuracy with which splines can approximate the
optimal control. Thus, it is quite conceivable that a great deal of work will be spent to achieve a very
accurate integration, which is often necessary to ensure successful line searches, but this effort will be
wasted on a relatively inaccurate solution.Second, the solution of the discretized problem can easily
involve hundreds of simulations.The integration accuracy during most of the simulations will have very
little affect on the accuracy of the final solution.Therefore, it is usually much more efficient to solve a
sequence of discretized problems, each with a more accurate integration mesh, using a fast, fixed step-size
integration method.Third, the gradients produced for the variable step-size method are approximations to
the actual, continuous-time gradients for the original problemOCP; they are not exact gradients for the
discretized problems.Thus, the solution of the discretized problem will usually require more iterations
and will be less accurate (relative to the actual solution of the discretized problem) when using the vari-
able step-size method than when using one of the fixed step-size integration routines.Again, otherwise
useless integration accuracy is required to produce sufficiently accurate gradient approximations.

There are, however, situations in which it is best to use the variable step-size integration method.
The first situation is when the system dynamics are very difficult to integrate. Inthis case, or any other
case in which the the integration error greatly exceeds the spline approximation error, it is more efficient
to use the variable step-size method.In some cases, the integration has to be performed using the variable
step-size method.This can occur if the system is described by stiff differential equations or if the system
contains highly unstable dynamics.

Another situation in which it can be advantageous to use the variable step-size integration method is
if the location of discontinuities in the optimal control, or discontinuities in the derivatives of the optimal
control, are known a priori . In this case, it may be possible to increase the solution accuracy by placing
breakpoints in the discretization mesh where these discontinuities occur and then using a spline of order

one greater than the overall smoothness of the optimal control13. The location of the discontinuity for the
discretized problem will be very close to the discontinuity in the optimal control if the integration toler-
ance is small and the optimal control is well-approximated by the spline away from the discontinuity.
Hence, the overall accuracy will not be limited by the discontinuity.

The variable step-size integration routine can use first, second, third, or fourth order splines.For
unconstrained problems, or problem with endpoint constraints, it is best to use fourth order splines so that
the spline approximation error is as small as possible.For problems with control and/or trajectory con-
straints, first or second order splines are recommended.

Coor dinate T ransf ormation

All of the optimization programs in RIOTS_95 solve finite-dimensional approximations toOCP obtained
by the discretization procedure described in the introduction of §5.Additionally, a change of basis is per-
formed for the spline control subspaces.The new basis is orthonormal.This change of basis is accom-
plished by computing the matrixM � with the property that for any two splinesu(⋅) and v(⋅) with coeffi-
cients� and� ,

12Sometimes a higher-order method must be used to provide a reasonable solution to the system differential equations.
13A spline of higher order would be too smooth since RIOTS_95 currently does not allow splines with repeated interior knots.

Section 6: Optimization Programs 55

/
\ u, v \

/ L2
= /

\ � M � , � \
/ ,

(recall that � and � are row vectors. Thesplines coefficients in the transformed basis are given by

� ∼ = � M1/2� and� ∼ = � M1/2� . In the new coordinates,

/
\ u, v \

/ L2
= /

\ � ∼ , � ∼ \
/ .

In words, theL2-inner product of any two splines is equal to the Euclidean inner product of their coeffi-
cients in the new basis. Thematrix M � is referred to as thetransform matrixand the change of basis is
referred to as thecoordinate transformation.

By performing this transformation, the standard inner-product of decision variables (spline coeffi-
cients) used by off-the-shelf programs that solve mathematical programs is equal to the function space
inner product of the corresponding splines.Also, because of the orthonormality of the new basis, the con-
ditioning of the discretized problems is no worse than the conditioning of the original optimal control
problemOCP. In practice, this leads to solutions of the discretized problems that are more accurate and
that are obtained in fewer iterations than without the coordinate transformation.Also, any termination
criteria specified with an inner product become independent of the discretization level in the new basis.

In effect, the coordinate transformation provides a natural column scaling for each row of control
coefficients. Itis recommended that, if possible, the user attempt to specify units for the control inputs so
that the control solutions have magnitude of order one.Choosing the control units in this way is, in effect,
a row-wise scaling of the control inputs.

One drawback to this coordinate transformation is that for splines of order two and higher the matrix
M−1/2� is dense.A diagonal matrix would be preferable for two reasons. First,computingM−1/2� is com-
putationally intensive for large N. Second, there would be much less work involved in transforming
between bases: each time a new iterate is produced by the mathematical programming software, it has to
be un-transformed to the original basis.Also, every gradient computation involves an inverse transforma-
tion. Third,simple control bounds are converted into general linear constraints by the coordinate transfor-
mation. Thispoint is discussed next.

Control bounds under the coordinate transformation. Simple bounds on the spline coefficients
takes the formak ≤ � k ≤ bk, k = 1, . . ,N + � − 1. If ak andbk are in fact constants,a andb, then for all
t, a ≤ u(t) ≤ b. Now, under the coordinate transformation, simple bounds of this form become

(a1 , . . . , � N+� −1) ≤ � ∼ M−1/2� ≤ (b1 , . . . , bN+� −1) .

Thus, because of the coordinate transformation, the simple bounds are converted into general linear
bounds. Sincethis is undesirable from an efficiency point of view, RIOTS_95 instead replaces the bounds
with

(a1 , . . . , � N+� −1)M1/2� ≤ � ∼ ≤ (b1 , . . . , bN+� −1)M1/2� .

For first order splines (piecewise constant), these bounds are equivalent to the actual bounds sinceM1/2� is
diagonal. For higher order splines, these bounds are not equivalent. They are, however, approximately
correct since the entries of the matrixM � fall off rapidly to zero away from the diagonal.

It turns out that the problems enumerated above can be avoided when using second order splines
(piecewise linear) which are, in any case, the recommended splines for solving problems with control
bounds. Insteadof usingM � in the coordinate transformation, the diagonal matrix

Section 6: Optimization Programs 56

M =











∆1
∆1 + ∆2

2 ∆2 + ∆3

2 . . .
∆N−1 + ∆N

2
∆N











,

with ∆k =. tN,k+1 − tN,k, is used. Thistransformation matrix is derived in [4, Sec. 2.7] and retains the
important attributes of the transformation given by M � . In riots andpdmin, M is used for the coordinate
transformation, instead ofM � , when second order splines are used if(i) problem OCP has control
bounds,(ii) RK2 is being used as the integration method, or(iii) N > 300. Thelatter case is employed
because the time it takes to compute the transform becomes excessive whenN is large. When� > 2, the
transformation is skipped altogether if(i) N > 300 or (ii) LSODA is being used on a problem with con-

trol bounds14.

14Recall from Table S3 (p. 36) that splines of order greater than 2 can only be used with RK4 and LSODA.

Section 6: Optimization Programs 57

Description of the Optimization Pr ograms

The first six inputs are the same for all of the optimization programs; they are listed in the following table.
Default values for vectors apply to each component of that vector. Specifying [] for an input causes that
input to be set to its default value. Inthe following, N is the discretization level and � is the order of the
control splines.

Table O3

Input Rows Columns Description

x0 n 1, 2 or 4 x0=[x0,{fixed,{x0min,x0max}}] where

x0 is the nominal value of the initial state� .

fixed For eachi such thatfixed(i)=0 , the cor-
responding initial state value � i is treated as a
free decision variable. Default: 1

x0min Specifies lower bound for each free initial
condition � i . Default:−∞

x0max Specifies upper bound for each free initial
condition � i . Default:∞

u0 m N + � − 1 Initial guess for the spline coefficients of the controlu.

t 1 N + 1 The integration mesh points/spline breakpoints.

Umin m N + � − 1 or 1 Lower bounds on the spline coefficients foru. If Umin
is specified as a single column, its values will apply as a
lower bound on all of the spline coefficients. Default:
−∞

Umax m N + � − 1 or 1 Upper bounds on the spline coefficients foru. If Umax
is specified as a single column, its values will apply as
an upper bound on all of the spline coefficients. Default:

∞
params p 1 Provides the system parameters if required.

The first two outputs are the same for all of the optimization programs; they are listed in the following
table:

Table O4

Output Rows Columns Description

u m N + � − 1 The optimal control solution.
x n N + 1 The optimal state trajectory solution.

Section 6: Optimization Programs 58

�$^ E O A � E � 7 E
&(_ F 6 B & F � 9 F

Purpose

This function usespdmin as an inner loop for an augmented Lagrangian algorithm that solves optimal
control problem with, in addition to simple bounds on¡ andu, endpoint equality constraints.Only one
objective function is allowed.

The user is urged to check the validity of the user-supplied derivatives with the utility program
check_deriv before attempting to usepdmin.

Calling Syntax

[u,x,f,lambda,I_i] = aug_lagrng([x0,{fixed,{x0min,x0max}}],u0,t,
Umin,Umax,params,N_inner,N_outer,
ialg,{method},{[tol1,tol2]},{Disp})

Description of the Inputs

The first six inputs are described in Table O3.

N_inner Maximum number of iterations for each inner loop call topdmin.

N_outer Maximum number of outer iterations.

ialg Specifies the integration algorithm used bysimulate.

method Specifies the method for computing descent directions in the unconstrained subspace.
The choices are explained in the description ofpdmin. Default: ’vm’ .

tol1,tol2 Optimality tolerances.Default: [¢ 1/2
mach , ¢ 1/3

mach]. Theouter loop terminates if

||∇ f (£) −
qee

¤ = 1
Σ ¥ ¤ ∇ g

¤
ee(£)|| ≤ tol1 (1 + | f (£)|)

and

¤ ∈∈ qee

max |g
¤
ee(£)| ≤ tol2 .

Disp Passed on topdmin to control amount of displayed output.Default: 0.

Description of the Outputs

The first two outputs are described in Table O4.

f The objective value at the obtained solution.

I_i Index set of elements of [u(:) ; ¡] that are not at their bounds.

lambda Vector of Lagrange multipliers associated with the endpoint equality constraints.

Section 6: Optimization Programs 59

�$^ E O A � E � 7 E

Description of the Algorithm

This program callspdmin to minimize a sequence of augmented Lagrangian functions of the form

Lc,¦ (§) = f (§) −
qee

¨ = 1
Σ © ¨ g̈ee(§) +

1

2

qee

¨ = 1
Σ c̈ g̈ee(§)2

subject to simple bounds onª andu. The value of the augmented Lagrangian and its gradient are sup-
plied topdmin by a_lagrng_fncvia extension 1 (see description ofpdmin).

The values of the Lagrange multiplier estimates© ¨ , « = 1, . . . ,qee, are determined in one of two
ways depending on the setting of the internal variableMETHODin aug_lagrng.m.Initially © ¨ = 0.

Multiplier Update Method 1. This method adjusts the multipliers at the end of each iteration of
pdmin by solving the least-squares problem

© = ¦ ∈∈ IRqee
min ||∇ f (§) −

qee

¨ = 1
Σ © ¨ ∇ g̈ee(§)||2I _i ,

where the norm is taken only on the uncstrained subspace of decision variables which is indicated by the
index set I_i . This update is performed bymultiplier_update which is called bypdmin via extension
2. If update method 1 is used, the tolerance requested for the inner loop is decreased by a factor of ten on
each outer iteration starting from 10min { 6,N_outer } ¬ 1/2

machuntil the tolerance is¬ 1/2
mach.

Multiplier Update Method 2. This method is the standard ‘‘method of multipliers’’ which solves the
inner loop completely and then uses the first order multiplier update

© ¨ ← © ¨ − c̈ g̈ee(§) , \/ ­ ∈∈ Ï

where

Ï =. { « ∈∈ qee | |g̈ee(§)| ≤ 1
4 |g̈ee(§ previous)| or |g̈ee(§)| ≤ tol2 } .

If update method 2 is used, the tolerance requested for the inner loop is fixed at¬ 1/2
mach.

Penalty Update. The initial values for the constraint violation penalties arec̈ = 1, « = 1, . . . ,qee. It
may be helpful to use larger initial values for highly nonlinear problems.The penalties are updated at the
end of each outer iteration according to the rule

c̈ ← 10c̈ , \/ ­ /∈ Ï ,

whereI ¨ is as defined above.

Note that this algorithm is implemented mainly to demonstrate the extensible features ofpdmin and is
missing features like, (i) constraint scaling,(ii) an active set method for handling inequality endpoint con-
straints,(iii) a mechanism for decreasing constraint violation penalties when possible and, most impor-
tantly, (iv) an automatic mechanism for setting the termination tolerance for each call topdmin.

Notes:

1. On return from a call toaug_lagrng, the variableopt_program will be defined in the Matlab
workspace. Itwill contain the string’aug_lagrng’ .

See Also: pdmin, a_lagrng_fnc.m, multiplier_update.m.

Section 6: Optimization Programs 60

® ^$! % �
¯(_:)0/2�

Purpose

This program callsriots to solve problems defined on a sequence of different integration meshes, each of
which result in a more accurate approximation toOCP than the previous mesh.The solution obtained for
one mesh is used as the starting guess for the next mesh.

The user is urged to check the validity of the user-supplied derivatives with the utility program
check_deriv before attempting to usepdmin.

Calling Syntax

[new_t,u,x,J,G,E] = outer([x0,{fixed,{x0min,x0max}}],u0,t,
Umin,Umax,params,N_inner,[N_outer,{max_N}]
ialg,{[tol1,tol2,tol3]},{strategy},{Disp})

Description of the Inputs

The first six inputs are described in Table O3.

N_inner Maximum number of iterations for each inner loop ofriots.

N_outer Maximum number of outer iterations.

max_N The maximum discretization level; outer will terminate if the discretization level
exceedsmax_N. Default:∞

ialg Specifies the integration algorithm used bysimulate.

tol1,tol2,tol3 Optimality tolerances.The outer loop terminates if

||∇ L(°)||I ≤ tol1 (1 + | f (°)|) ,

where ||∇ L(°)||I is theH2-norm of the free portion of∇ L(°),

± ∈∈ qee

max |g
±
ee(°)| ≤ tol2 ,

and

||uN − u* || ≤ tol3 (1 + ||uN ||∞)b ,

whereb is the nominal final time.The default values for these tolerances factors
are [² 1/3

mach, ² 1/4
mach, ² 1/6

mach].

strategy Passed on to distrib ute to select the mesh redistribution strategy.
Default = 3.

Disp Passed on toriots to control amount of displayed output.Default = 1.

Section 6: Optimization Programs 61

® ^$! % �

Description of the Outputs

The first two outputs are described in Table O4.

new_t The final integration mesh obtained from the final mesh redistribution.

u The optimal control solution defined on the final meshnew_t .

x The optimal trajectory solution.

J A row vector whosei-th component is the value of the objective function, computed using
LSODA, after thei-th call toriots.

G A row vector whosei-th component is the sum of the constraint violations, computed using
LSODA, after thei-th call toriots.

E A row vector whosei-th component is an estimate of ||³ N − ³ * ||H2
after the (i + 1)-th iteration.

With ³ = (u, ´), ||³ ||H2
is defined by

||³ ||H2
=.




||́ ||2 + ∫

b

a
||u(t)||22dt





1/2

.

Description of Algorithm

outer is an outer loop forriots. During each iteration,riots is called to solve the discretized problem on
the current mesh starting from the solution of the previous call toriots interpolated onto the new mesh.
After riots returns a solution,est_errors and control_error are called to provide estimates of certain
quantities that are used to determine whetherouter should terminate or if it should refine the mesh.If
necessary, the mesh is refined bydistrib ute, with FAC=10, according tostrategy except following
the first iteration.After the first iteration, the mesh is always doubled.

After each iteration, the following information is displayed: theH2-norm of the free portion of the
gradient of the Lagrangian, the sum of constraint errors, objective function value, and integration error of
the integration algorithm ialg at the current solution.All of these quantities are computed by
est_errors. The first three values are estimates obtained using LSODA with a tolerance set to about one
thousandth of the integration error estimate.The control solution is plotted after each iteration (although
the time axis is not scaled correctly for free final time problems).

Additionally, following all but the first iteration, the change in the control solution from the previous
iteration and an estimate of the current solution error, ||³ N* − ³ * ||H2

, are display.

Notes:

1. If solutions exhibit rapid oscillations it may be helpful to add a penalty on the piecewise derivative
variation of the control by setting the variableVARin outer.m to a small positive value.

2. Thefactor by whichdistrib ute is requested to increase the integration accuracy after each iteration
can be changed by setting the variableFACin outer.m.

3. Anexample usingouter is given in Session 4 (§3).

See Also: riots, distrib ute, est_errors, control_error.

Section 6: Optimization Programs 62

µ,�8S2" 7
¶��:UV+$9

Purpose

This is an optimization method based on the projected descent method[3]. It is highly efficient but does
not solve problems with general constraints or more than one objective function.

The user is urged to check the validity of the user-supplied derivatives with the utility program
check_deriv before attempting to usepdmin.

Calling Syntax

[u,x,J,inform,I_a,I_i,M] = pdmin([x0,{fixed,{x0min,x0max}}],u0,t,
Umin,Umax,params,[miter,{tol}],
ialg,{method},{[k;{scale}]},{Disp})

Description of Inputs

The first six inputs are described in Table O3.The remainder are described here.

miter The maximum number of iterations allowed.

tol Specifies the tolerance for the following stopping criteria

||gk||I k
/ |I k| < tol 2/3(1 + |f(· k)|) ,

f (uk) − f (uk−1) < 100tol (1 + |f(uk)|) ,

||uk − uk−1||∞ < tol 1/2(1 + ||uk||∞) ,

xi
k = 0 , \/ i ∈∈ Ak ,

wheregk is thek-th component of the derivative of f (⋅) in transformed coordinates,I k is set
of inactive bound indices andAk is set of active bound indices.Default: ¸ 1/2

mach.

ialg Specifies the integration algorithm used bysimulate.

method A string that specifies the method for computing descent directions in the unconstrained sub-
space. Thechoices are:

’’ limited memory quasi-Newton (L-BFGS)
’steepest’ steepest descent

’conjgr’ Polak-Ribière conjugate gradient method
’vm’ limited memory quasi-Newton (L-BFGS)

The default method is the L-BFGS method.

k This value is used to determine a perturbation with which to compute an initial scaling for the
objective function. Typically, k is supplied from a previous call topdmin or not at all.

scale This value is used to determine a perturbation with which to compute an initial function scal-
ing. Typically, scale is supplied from a previous call topdmin or not at all.

Section 6: Optimization Programs 63

µ,�8S2" 7

Disp Disp = 0,1,2 controls the amount of displayed output with 0 being minimal output and 2
being full output.Default: 2.

Description of Outputs

The first two outputs are described in Table O4.

J A row vector whose (i + 1)-th component is the value of the objective function at the end of
the i-th iteration. The last component ofJ is the value of the objective function at the
obtained solution.

I_a Index set of elements of [u(:) ; ¹] that are actively constrained by bounds.

I_i Index set of elements of [u(:) ; ¹] that are not constrained by bounds.

inform This is a vector with four components:

inform(1) Reason for termination (see next table).
inform(2) Function space norm of the free portion of∇ f (º), º = (u, ¹).
inform(3) Final step-sizek = log » / log¼ where » is the Armijo step-

length and¼ = 3/5.
inform(4) The value of the objective function scaling.

The possible termination reasons are:

inform(1) Cause of Termination.

-1 Simulationproduced NaN or Inf.
0 Normal termination tests satisfied.
1 Completed maximum number of iterations.
2 Search direction vector too small.
3 All variables at their bounds and going to stay that way.
4 Gradient too small.
5 Step-size too small.
6 User test satisified (user test returned 2).

Description of Displa yed Output

Depending on the setting ofDisp , pdmin displays a certain amount of information at each iteration.
This information is displayed in columns.In the first column is the number of iterations completed; next
is the step-size,» = ¼ k, with k shown in parenthesis; next is ||∇ f (º)||I k

which is the norm of the gradient
with respect to those decision variables that are not at their bounds; next is a four (three if there are no
upper or lower bounds) letter sequence ofT’s and F’s where aT indicates that the corresponding termina-
tion test, described above, is satisfied; next is the value of the objective function; and in the last column,
an asterix appears if the set of indices corresponding to constrained variables changed from the previous
iteration.

Section 6: Optimization Programs 64

µ,�8S2" 7

Extensib le Features

Becausepdmin is designed to be callable by other optimization programs, it includes three extensions
that allow the user to customize its behavior. These extensions are function calls that are made to user
supplied subroutines at certain points during each iteration.They allow the user to(i) construct the
objective function and its gradients,(ii) specify termination criteria and perform computations at the end
of eachpdmin iteration, and(iii) add additional tests to the step-size selection procedure.The use of the
first two of these extensions is demonstrated in the programaug_lagrng.

Extension 1. If the global variableUSER_FUNCTION_NAMEis defined in Matlab’s workspace and is
a string containing the name of a valid m-file,pdmin will call that m-file, instead ofsimulate, to evaluate
the system functions and gradients.This can be used to construct a composite function from several dif-
ferent calls tosimulate. For instance, a penalty function can be formed to convert a constrained problem
into an unconstrained problem.The syntax for the user function is

[f0,x,grad_u,grad_x0] = USER_FUNCTION_NAME(x0,u,t,ialg,action)

where the input and output variables are the same as for calls tosimulate. See a_lagrng_fnc.m for an
example.

Extension 2. If the global variable USER_TEST_NAMEis defined in Matlab’s workspace and is a
string containing the name of a valid m-file,pdmin will call that m-file at the end of each iteration.The
syntax for the user function is

user_terminate = USER_TEST_NAME(f0,x,u,grad_u,grad_x0,I_i,free_x0)

where I_i is a column vector indexing all elements of [u(:) ; ½] that are not actively constrained by
bounds and free_x0 is the index set of free initial conditions. If the user test returns
user_terminate=1 and the other termination conditions are satisfied, thenpdmin will terminate. If
user_terminate=2 , then pdmin will terminate without regard to the other termination tests.This
function can be used solely for the purpose of performing some operations at the end of each iteration by
always returning 1.See multiplier_update.m for an example.

Extension 3. If the global variableARMIJO_USER_TESTis defined in Matlab’s workspace and is a
string containing the name of a valid m-file, the functionarmijo , which is called bypdmin to compute
the Armijo step-length, will call that m-file in order to guarantee that the step-length satisfies

ARMIJO_USER_TEST(j,x,x0,u,t,ialg,I_i,free_x0) <= 0

wherex andu are evaluated at the current trial step-length andI_i andfree_x0 have the same mean-
ing as for Extension 2.This extension can be used, for instance, in a barrier function algorithm to prevent
trial step-lengths that are outside the region of definition of the barrier function.

Notes:

The following features are used in the current implementation ofpdmin.

1. A scaling for the objective function is computed using the objective scaling 2 described forriots.
The primary purpose of this scaling is to prevent an excessive number of function evaluations during the
first line search.

Section 6: Optimization Programs 65

µ,�8S2" 7

2. TheArmijo step-length adjustment mechanism will stop increasing the step-length ifk ≤ 0 and and
the next increase in step-length results in an increase in the objective function.

3. A quadratic fit is performed at the end of each step-length calculation when the selected search direc-
tion method isconjgr . This fit takes one extra system simulation.

4. If simulate returnsNaN, the step-length will be decreased untilsimulate returns a valid result.

5. Becauseof the coordinate transformation, the inner products in the termination tests are inner-
products inL2[a, b]. Thusthe tests are independent of the discretization level.

6. Controlbounds can be violated if using splines of order¾ > 2 if the spline coordinate transformation
is in effect. Thisis only possible with RK4 because splines of order¾ > 2 are only allowed for RK4 and
LSODA and the transform is turned off for LSODA i f bounds are used.

Section 6: Optimization Programs 66

� " ® ! Q
� + ¯(),3

Purpose

This is the main optimization program in RIOTS_95. Thealgorithm used byriots is a sequential
quadratic programming (SQP) routine called NPSOL.Multiple objective functions can be handled indi-
rectly using the transcription describe in §2.3.

The user is urged to check the validity of the user-supplied derivatives with the utility program
check_deriv before attempting to useriots.

Calling Syntax

[u,x,f,g,lambda2] = riots([x0,{fixed,{x0min,x0max}}],u0,t,Umin,Umax,
params,[miter,{var,{fd}}],ialg,
{[eps,epsneq,objrep,bigbnd]},{scaling},
{disp},{lambda1});

Description of Inputs

The first six inputs are described in Table O3.The remainder are described here.

miter The maximum number of iterations allowed.

var Specifies a penalty on the piecewise derivative variation[4, Sec. 4.5]15 of the control to be
added to the objective function. Canonly be used with first and second order splines.
Adding a penalty on the piecewise derivative variation of the control is useful if rapid oscilla-
tions are observed in the numerical solution.This problem often occurs for singular
problems [13,14]in which trajectory constraints are active along singular arcs.The penalty
should be ten to ten thousand times smaller than the value of the objective function at a solu-
tion.

fd If a non-zero value is specified, the gradients for all functions will be computed by finite-
difference approximations.In this caseDh, Dg, andDl will not be called.Default: 0.

ialg Specifies the integration algorithm used bysimulate.

eps Overall optimization tolerance.For NPSOL,eps is squared before calling NPSOL.See the
SQP user’s manual for more details.Default: 10−6.

epsneq Nonlinear constraint tolerance.Default: 10−4.

objrep Indicates function precision.A value of 0 causes this features to be ignored.Default: 0.

bigbnd A number large than the largest magnitude expected for the decision variables. Default: 106.

scaling Allowable values are 00, 01, 10, 11, 12, 21, 22.Default: 00. See description below.

disp Specify zero for minimal displayed output. Default: 1.

15The piecewise derivative variation is smoothed to make it differentiable by squaring the terms in the summation.

Section 6: Optimization Programs 67

� " ® ! Q

lambda1 Only applies to NPSOL. Controls warm starts.Default: 0. See description below.

Description of Outputs

The first two outputs are described in Table O4.

f The objective value at the obtained solution.

g Vector of constraint violations in the following order (N.B. linear constraints are treated as
nonlinear constraint for systems with nonlinear dynamics):

Table O5

linear endpoint inequality
linear trajectory inequality
linear endpoint equality
nonlinear endpoint inequality
nonlinear trajectory inequality
nonlinear endpoint equality

lambda2 Vector of Lagrange multipliers.This output has two columns if NPSOL is used.The first
column contains the Lagrange multipliers.The firstm(N + ¿ − 1) components are the multi-
pliers associated with the simple bounds onu. These are followed by the multipliers associ-
ated with the bounds on any free initial conditions.Next are the multipliers associated with
the general constraint, given in the same order as the constraint violations in the outputg.
The second column oflambda2 contains information about the constraints which is used by
riots if a warm start usinglambda1 is initiated (as described below).

Scaling

There are several heuristic scaling options available in riots for use with badly scaled problems.There
are two scaling methods for objective functions and two scaling methods for constraints.These are
selected by settingscaling to one of the two-digit number given in the following table:

Table O6

scaling Objective Scaling Method Constraint Scaling Method

00 noscaling noscaling
01 nofunction scaling constraint scaling 1
10 functionscaling 1 no constraint scaling
11 functionscaling 1 constraint scaling 1
12 functionscaling 1 constraint scaling 2
21 functionscaling 2 constraint scaling 1
22 functionscaling 2 constraint scaling 2

Section 6: Optimization Programs 68

� " ® ! Q

In the following, FACTOR =20. Also,À 0 = (u0, Á 0).

Objective Scaling 1: For eachÂ ∈∈ qo, the Â -th objective function is scaled by

Ã Ä
o =

1

1 + | f Ä (À 0)|
FACTOR.

Objective Scaling 2: For eachÂ ∈∈ qo, let

S = (1+ ||À 0||∞) / (100||∇ f Ä (À 0)||∞)

Å À = [À 0 − S∇ f Ä (À 0)]# ,

Ã =
1

2





/
\
Å À ,

Å À \
/ I

f Ä (À 0 +
Å À 0) − f Ä (À 0) − /

\ ∇ f Ä (À 0),
Å À 0

\
/ I





,

where [⋅]# is the projection operator that projects its argument into the region feasible with respect to the
simple bounds onu and Á , and I is the set of indices ofÀ 0 corresponding to components which are in the
interior of this feasible region (Ã is the distance along the projected steepest descent direction,

Å À , to the
minimum of a quadratic fit tof (⋅)). If Ã ≥ 10−4, scale theÂ -th objective function by Ã Äo = FACTORÃ .
Otherwise, computeÃ = ||∇ f Ä (À 0)||. If Ã ≥ 10−3, set Ã Äo = FACTORÃ . Otherwise, use function scaling 1.

Constraint Scaling 1: For eachÂ ∈∈ qei, the endpoint inequality constraints are scaled by

Ã Ä
ei =

1

max { 1, |gÄei(À 0)| }
FACTOR,

for eachÂ ∈∈ qee, the endpoint equality constraints are scaled by

Ã Ä
ee =

1

max { 1, |gÄee(À 0)| }
FACTOR,

and, for eachÂ ∈∈ qti , the trajectory inequality constraints are scaled by

Ã Ä
ti =

1

max { 1,
k ∈∈ { 1,...,N+1 }

max |l Ä ti (tk, xk, uk)| }
FACTOR.

Constraint Scaling 2: The trajectory constraint scalings are computed in the same way as for con-
straint scaling method 1.For each Â ∈∈ qei, the endpoint inequality constraints are scaled byÃ Ä

ei = Ã and,
for eachÂ ∈∈ qee, the endpoint equality constraints are scaled byÃ Ä

ee = Ã where Ã is determined as fol-
lows. If |g(À 0))| ≥ 10−3, let

Ã =
1

|g(À 0)|
FACTOR,

otherwise, if ||∇ g(À 0)|| ≥ 10−3, let

Ã =
1

||∇ g(À 0)||
FACTOR,

otherwise do not scale.

Scaling will not always reduce the amount of work required to solve a specific problem.In fact, it
can be detrimental.In the following table, we show the number of iterations required to solve some

Section 6: Optimization Programs 69

� " ® ! Q

problems (described in the appendix) with and without function scaling.All of these problems were
solved using second order splines on a uniform mesh with a discretization level of N = 50. Theproblems
were solved usingscaling set to 0, 10, and 20.It should be noted that none of these problems is seri-
ously ill-conditioned.

Table O7

Problem ialg 0 10 20

LQR 2 5 7 7
Rayleigh w/o endpoint constraint 2 18 17 14
Rayleigh with endpoint constraint 2 24 29 19
Goddard w/o trajectory constraint 4 69 29 45
Goddard with trajectory constraint 4 22 17 19

For the last row, riots was called with var = 10−4. Constraint scaling did not have any affect on the
number of iterations for these problems.Discussion of scaling issues can be found in[12,15,16].

Warm Star ts

The inputlambda1 controls the warm-starting feature available with riots if it is linked with NPSOL.
There are two types of warm starts.

The first type of warm start is activated by settinglambda1=1 . If this warm start is used, the
Lagrange multiplier estimates and Hessian estimate from the previous run will automatically be used as
the starting estimates for the current run.This is useful ifriots terminates because the maximum number
of iterations has been reached and you wish to continue optimizing from whereriots left off. This type of
warm start can only be used if the previous call toriots specifiedlambda1=-1 or lambda1=1 . Setting
lambda1=-1 does not cause a warm-start, it just prepares for a warm start by the next call toriots.

The second type of warm start allows warm starting from the previous solution fromriots but inter-
polated onto a new mesh and is only implemented for first and second order splines.It is activated by
providing estimates of the Lagrange multipliers in the first column of inputlambda1 and the status of
the constraints in the second column oflambda1 . Typically, lambda1 is produced by the program dis-
tribute which appropriately interpolates thelambda2 output from the previous run ofriots onto the new
mesh. Whenlambda1 is supplied in this way, riots estimatesH(Æ), the Hessian of the Lagrangian at the
current solution point, by applying finite-differences to the gradients of all objective and constraint func-
tions weighted by their Lagrange multipliers (and scalings if a scaling option has been specified).

The estimateH(Æ) of the Hessian of the Lagrangian is computed by the programcomp_hess. This
computation requiresN + Ç + nfree x0 system simulations (wherenfree x0 is the number of free initial con-
ditions) and twice as many gradient computations as there are objective functions and constraints with
non-zero Lagrange multipliers.Also, if a non-zero value forvar is specified, the second derivative of the
penalty term on the piecewise derivative variation of the control is added to the Hessian estimate.When
Ç ≤ 2, the computation takes advantage of the symmetry of the Hessian by stopping the simulations and
gradient computations once the calculations start filling the Hessian above its diagonal.After H is com-

puted, it is converted into transformed coordinates using the formulaH
∼

= (M−1/2È)T HM−1/2È , unless the

Section 6: Optimization Programs 70

� " ® ! Q

transformation mechanism has been disabled.

Because NPSOL expects the Cholesky factorization of a positive definite Hessian estimate, the fol-

lowing additional steps are taken. First,a Cholesky factorization is attempted onH
∼

. If this fails (because

H
∼

is not positive definite) the computation continues with the following procedure.A singular value

decomposition is performed to obtain the factorizationH
∼

= USVT , whereS is the diagonal matrix of sin-

gular values ofH
∼

. Next, each diagonal element,É i , of S is set toÉ i = max { É i , Ê 1/3
mach} . Then, we set

H
∼

= USUT , which, becauseH
∼

= H
∼ T , makes all negative eigenvalues ofH

∼
positive while preserving the

eigenstructure ofH
∼

. Finally, the Cholesky factorization ofH
∼

is computed.

Notes:

1. SinceNPSOL is not a feasible point algorithm, it is likely that intermediate iterates will violate some
nonlinear constraints.

2. Becauseof the coordinate transformation, the inner products in the termination tests correspond to
inner-products inL2[a, b]. Thusthe tests are independent of the discretization level.

3. Controlbounds can be violated if using splines of orderË > 2 if the spline coordinate transformation
is in effect. Thisis only possible with RK4 because splines of orderË > 2 are only allowed for RK4 and
LSODA and the transform is turned off for LSODA i f bounds are used.

Bugs:

1. riots uses the Matlab MEX functionmexCallMATLAB to make calls tosimulate. There is a bug in
this function that interferes with the operation ofctrl-C . This problem can be circumvented by compil-
ing simulatedirectly intoriots (see instructions on compilingriots).

2. Thefull warm-start feature, which requires the computation of the Hessian using finite-differencing
of the gradients, is not allowed if the inputfd is set to a non-zero value.

Section 6: Optimization Programs 71

7. UTILITY ROUTINES

There are several utility programs, some are used by the optimization programs and some are callable by
the user. Those utility programs of interest to the user are described in this section.These are:

control_error Computes an estimate of the norm of the error of the computed solution.If Ì N
* is the

computed solution andÌ * is a local minimizer for problemOCP, the solution error is
||Ì N

* − Ì * ||H2
.

distrib ute Redistributes the integration mesh according to one of several mesh refinement strate-
gies including one which simply doubles the mesh.The control spline defined on the
previous mesh will be interpolated onto the mesh.The order of the spline is allowed to
change.

est_errors Returns an estimate of the global integration error for the fixed step-size Runge-Kutta
methods and uses the variable step-size integration algorithm to obtain accurate mea-
sures of the objective functions, constraint violations and trajectories.It also returns
the function space norm the free portion of the gradient of the augmented Lagrangian
which is needed bycontrol_error.

sp_plot Plots spline functions.

transform Computes a matrix which allows theL2 inner product of two splines to be computed
by taking the inner product of their coefficients.

Section 7: Utility Routines 72

� ® 78! � ® A O % � � ® �
'*¯(9:)0�;¯ B 65/2� �;¯(�

Purpose

This function uses values computed byest_errors for solutions ofOCP on different integration meshes
to estimate ||Í N − Í * ||H2

for the current solutionÍ N = (uN , Î N) using results from[4, Sec. 4.4.].

Calling Syntax

[error,norm_zd]=control_error(x01,u1,t1,ze1,x02,u2,t2,ze2,{Tf})

Description

This program compares the two solutions Í N1
= (u1 , x01) and Í N2

= (u2 , x02), corresponding to the
mesh sequencest1 and t2 to produce an estimate of ||Í N2

− Í * ||H2
where Í * = (u* , Î *) is a solution for

OCP. For free final time problems,Tf should be set to the duration scale factor (see transcription for free
final time problems in §2).Only the first columns ofx01 andx02 are used.The inputsze1 andze2
are the norms of the free gradients of the augmented Lagrangians evaluated atÍ N1

and Í N2
, respectively,

which can be obtained from calls toest_errors.

The outputerror is the estimate of ||Í N2
− Í * ||H2

where

||Í N2
− Í * ||2H2

=. ||x02 − Î * ||22 +
a+(b−a)Tf

a
∫ ||u2(t) − u* (t)||22dt ,

with u2(⋅) the spline determined by the coefficientsu2 . The outputnorm_zd is ||Í N2
− Í N1

||H2
where

||Í N2
− Í N1

||2H2
=. ||x02 − x01 ||22 +

a+(b−a)Tf

a
∫ ||u2(t) − u1(t)||22dt ,

with u1(⋅) and u2(⋅) the splines determined by the coefficientsu1 andu2 , respectively.

Example

Let u1 be the coefficients of the spline solution for the mesht1 and letu2 be the coefficients of the spline
solution for the mesht2 . Let Ï 1 and Ï 2 be the Lagrange multipliers (if the problem has state constraints)
and letI1 and I2 be the index set of inactive control bounds returned by one of the optimization programs
(if the problem has control bounds).The Lagrange multipliers and the inactive control bound index sets
are also returned by the optimization routines.Then we can compute the errors,e1 = ||Í N1

− Í * ||H2
and

e2 = ||Í N2
− Í * ||H2

as follows:

>> [int_error1,norm_gLa1] = est_errors(x0,u1,t1,1,ialg1,lambda1,I1);

>> [int_error2,norm_gLa2] = est_errors(x0,u2,t1,1,ialg2,lambda2,I2);

>> error1 = control_error(x0,u2,t2,norm_gLa2,x0,u1,t1,norm_gLa1,1);

>> error2 = control_error(x0,u1,t1,norm_gLa1,x0,u2,t2,norm_gLa2,1);

See Also: est_errors.

Section 7: Utility Routines 73

�Ð" Q ! � " Ñ ^8! %
��+$35)0�;+$ÒÓ_<),/

Purpose

This function executes various strategies for redistributing and refining the current integration mesh.It
also interpolates the current control and Lagrange multipliers corresponding to trajectory constraints onto
this new mesh.

Calling Syntax

[new_t,new_u,new_lambda,sum_lte]=distribute(t,u,x,ialg,lambda,
n_free_x0,strategy,
{FAC},{new_K},{norm})

Description of Inputs

t Row vector containing the sequence of breakpoints for the current mesh.

u The coefficients of the spline defined on the current mesh.

x Current state trajectory solution.

ialg Integration algorithm to be used during next simulation or optimization.

lambda Current Lagrange multiplier estimates fromriots. Specify lambda=[] if you do not
need new multipliers for a warm start ofriots.

n_free_x0 Number of free initial conditions.This value only affects the extension of Lagrange mul-
tipliers needed for a warm start ofriots.

strategy Selects the redistribution strategy according to the following table:

strategy Type of Redistribution
1 Movable knots, absolute local truncation error.
2 Fixed knots absolute local truncation error.
3 Double the mesh by halving each interval.
4 Just change spline order tonew_K.
11 Movable knots, relative local truncation error.
12 Fixed knots, relative local truncation error.

For more information on these strategies, see Chapter 4.3.2 in4. Thequasi-uniformity
constant in equations (4.3.13) and (4.3.24) of that reference is set toÔ = 50. InStep 2of
Strategy 2 (and 12),Õ = 1/4.

FAC For use with strategies 1,2,11 and 12.If specified, the number of intervals in the new
mesh is chosen to achieve an integration accuracy approximately equal to the current inte-
gration accuracy divided byFAC. If FAC=[] or FAC=0, the number of intervals in the
new mesh will be the same as the previous mesh for strategies 1 and 11.For strategies 2
and 12, the relative errorsek will be used without being pre-weighted byFAC.

new_K Specifies the order of the output spline with coefficientsnew_u. By default, new_K is
the same as the order of the input spline with coefficientsu.

Section 7: Utility Routines 74

�Ð" Q ! � " Ñ ^8! %

norm Specifies the norm used to measure the integration error on each interval. If norm=0 ,
then

ek = ||ltek||2 , k = 1, . . . ,N .

If norm=1 , then

ek = ||ltek||∞ , k = 1, . . . ,N .

The quantity ltek is an estimate of the local truncation error produced by thek-th integra-
tion (see description ofsimulate, form 7). Default: 0.

Description of Outputs

new_t Contains the sequence of breakpoints for the new mesh.

new_u Contains the coefficients of the spline of ordernew_K (if specified) interpolated fromu
onto the new mesh.

new_lambda Tw o column matrix of Lagrange multiplier estimates and associate constraint status indi-
cators. Thosemultipliers (and indicators) corresponding to control bounds and trajectory
constraints are extended to the new mesh. Thisis for use with the warm start facility of
riots.

sum_lte An (n + 1)-column vector of the accumulated local truncation errors produced by the inte-
gration:

sum_lte (i) =
N

k=1
Σ ei

k , i = 1, . . , n+ 1 ,

whereei
k is as computed above. The (n + 1)-th component represents the accumulation of

local truncation errors for the integrand of the first objective function.

Notes:

1. Thealgorithm used in strategies 1 and 2 does not take into account the presence, if any, of trajectory
constraints. Strategies 2 and 12 include a mechanism that tends to add mesh points at times, or near
times, where trajectory constraints are active. The inputlambda must be supplied for this mechanism to
be used.

Section 7: Utility Routines 75

% Q ! O % � � ® � Q
/23;),65/W�;� ¯(�;3

Purpose

This function performs a high accuracy integration with LSODA to produce estimates of various quanti-
ties. Oneof these quantities is used bycontrol_error to produce an estimate of ||Ö N − Ö * ||H2

.

Calling Syntax

[int_error,norm_gLa,J,G,x,Ii] = est_errors([x0,{fixed}],u,t,Tf,
ialg,lambda,{I_i})

Description of Inputs

x0 Initial conditions of thecurrent solution. When one or more initial conditions are free
variables, setx0=x(:,1) wherex is the trajectory solution returned by one of the opti-
mization programs.

fixed An n-vector that indicates which components ofx0 are free variables. Iffixed(i)=0
thenx0(i) is a free variable. Default: all ones.

u Current control solution.

t Sequence of breakpoints for the current integration mesh on the (nominal) time interval
[a, b].

Tf The duration scale factor. For fixed final time problems, setTf=1 .

ialg Integration algorithm used to produce the current solution.

lambda Vector of Lagrange multiplier estimates (one or two columns depending on which opti-
mization program producedlambda).

I_i Index set of controls and free initial conditions that are not at their bounds (returned by
one of the optimization program).

Description of Outputs

int_error int_error(i) , i = 1, . . . ,n + 1, is an estimate of the global integration error,
|xi

N,N+1 − xi (b)|, of the current solution computed by summing the local truncation errors
produced by the integration method specified byialg . The local truncation errors are
obtained by a call tosimulate (form 7). If the discrete solver or the variable stepsize inte-
gration routine is being used,int_error is set to a vectors of zeros.If this is the only
output requested, the rest of the calculations are skipped.

norm_gLa This is an estimate of theH2 norm of the free gradient of the augmented LagrangianLc,×
evaluated at the current solutionÖ = (u, Ø). TheH2 norm of the free gradient of the aug-
mented Lagrangian is the norm restricted to the subspace of controls and initial condi-
tions that are not constrained by their bounds.Let grad_Lu be the gradient of the aug-
mented Lagrangian with respect to controls,grad_Lx0 be the gradient of the augmented

Section 7: Utility Routines 76

% Q ! O % � � ® � Q

Lagrangian with respect to initial conditions andM Ù be the spline transformation matrix
computed by transform. If Ii is the index set estimating the free portion ofÚ = [u(:);xi(free_x0)] (see below), then the free norm if computed as follows:

||∇ freeLc,Û (Ú)||H2
= gLM(Ii)’*gL(Ii) ,

where

gLM = [grad_Lu(:) M−1Ù ; grad_Lx0(free_x0)]

and

gL = [grad_Lu(:) ; grad_Lx0(free_x0)] .

In forming the augmented Lagrangian,Ü = lambda(:,1) andci = | Ü i |. Thequantity
||∇ freeLc,Û (Ú)||H2

is used bycontrol_error to estimate the error ||Ú N − Ú * ||H2
.

J An estimate of the objective function at the current solution.This estimate is produced using
LSODA.

G An estimate of the sum of constraint violations.This estimate is produced using LSODA.

x The solution trajectory as produced using LSODA.

Ii Set of indices that specify those time points in the mesht that are contained in the estimateI of
subintervals in [a, b] on which the control solution is not constrained by a control bound followed
by the indices of any free initial conditions that are not constrained by a bound.This index set is
used bycontrol_error. For the purpose of demonstration, consider a single input systems (m = 1)
with no free initial conditions.Let

Î =.
k ∈∈ I_i

∪ [tk−1, tk+1] ,

wheret0 =. t1 and tN+2 =. tN+1. Î is an estimate of the time intervals on which the control bounds

are inactive. From Î , the index set Ii is set to

Ii =. { k | tk ∈∈ Î } .

When there are multiple inputs, this procedure is repeated for each input.When there are free initial
conditions, the indices of the unconstrained components ofx0(free_x0) are added to the end of
Ii .

Notes:

1. If the user does not supply the derivative functionsDh andDl then it will be necessary to change the
statementIALG=5 to IALG=6 in the file est_errors.m.

See Also: control_error.

Section 7: Utility Routines 77

Q µ,O µ A ® !
35¶:65¶ B ¯()

Purpose

This program allows the user to easily plot controls which are represented as splines.

Calling Syntax

val = sp_plot(t,u,{tau})

Description

Produces a plot of the spline with coefficientsu defined on the knot sequence constructed from the inte-
gration mesht . The order, Ý , of the spline is presumed equal tolength(u) − N + 1. If tau is speci-
fied, u is not plotted, just evaluated at the timestau . Otherwise,u is plotted at 100 points with the same
relative spacing as the breakpoints int . Second order splines can also be plotted using the Matlab com-
mandplot instead ofsp_plot.

If the input tau is not given, then the output isval=[t;uval] wheret are the data points and
uval are the data values;uval has the same number of rows as the inputu. If the inputtau is given,
then the output is justval=uval .

Example . This example plots a first, second and third order spline approximation to one period of a
sinusoid using ten data points.The splines are produced using the commands in the Spline Toolbox.

>> t=[0:2*pi/10:2*pi];
>> sp1 = spapi(t,t(1:10),sin(t(1:10)));
>> [dummy,u1] = spbrk(sp1);
>> knots2 = augknt(t,2); knots3 = augknt(t,3);
>> sp2 = spapi(knots2,t,sin(t));
>> [dummy,u2] = spbrk(sp2);
>> tau = aveknt(knots3,3);
>> sp3 = spapi(knots3,tau,sin(tau));
>> [dummy,u3] = spbrk(sp3);
>> sp_plot(t,u1); sp_plot(t,u2); sp_plot(t,u3);

0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
First order spline

0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Second order spline

0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Third order spline

Section 7: Utility Routines 78

! � � 7 Q T ® � S
),� &(9:3;X8¯.� U

Purpose

This function produces the transformation matrixM Þ . It is called by riots and pdmin to generate the
spline coordinate transformation for the controls.

Calling Syntax

Malpha = transform(t,order)

Description

Given two splinesu1 andu2 of orderß = order with coefficient à 1 and à 2 defined on the knot sequence
with breakpoints given by t , /

\ u1, u2
\
/ L2

= trace(à 1M Þ,à T
1). This function works with non-uniform

meshes and with repeated interior knot points.

The output,Malpha is given in sparse matrix format.The transform matrix forß = 1, 2, 3, or 4
has been pre-computed for uniformly spaced mesh points.Also, if the inputs to the preceding call to
transform, if there was a preceding call, were the same as the values of the current inputs, then the previ-
ously computed transform matrix is returned.

Example

This example generates two second order splines and computes theirL2 inner-product by integrating their
product with the trapezoidal rule on a very fine mesh and by usingM Þ .

>> t = [0:.1:1];
>> knots = augknt(t,2);
>> coef1 = rand(1,11); coef2 = rand(1,11);
>> sp1 = spmak(knots,coef1);
>> sp2 = spmak(knots,coef2);
>> tau = [0:.0001:1];
>> u1 = fnval(sp1,tau);
>> u2 = fnval(sp2,tau);
>> inner_prod1 = trapz(tau,u1.*u2)

inner_prod1 = 0.2800

>> Malpha = transform(t,2);
>> inner_prod2 = coef1*Malpha*coef2’

inner_prod2 = 0.2800

>> inner_prod1-inner_prod2

ans = 1.9307e-09

Section 7: Utility Routines 79

8. INSTALLING, COMPILING AND LINKING RIO TS Most of the programs supplied with
RIOTS_95 are pre-compiled and ready to run as-is.By default, RIOTS_95 is configured to run user prob-
lems supplied as ‘sys_*.m’ m-files.The m-file form is described in Section 4 of this manual.If the user
wishes to run RIOTS_95 in this manner, no compilation and/or linking is required.However, a significant
increase in performance is possible if the user supplies his problem descprition in C code.In this case,
the user must compile his C code and link the resulting object code with the simulation program.This is
a fairly straightforward endeavor and is explained below.

Note: If you have the RIOTS_95 demo package but have not yet purchased RIOTS_95, you will not be
able to solve your own optimal control problems.Please refer to "license.doc" supplied with the demon-
stration for further details on the RIOTS_95 purchase agreement.

Compiling User -Supplied System Code

What you need:

1. Windows 3.x/95/NT

2. A RIOTS_95 distribution package available from the RIOTS homepage
http://robotics.eecs.berkeley.edu/˜adams/riots.html
http://www.cadcam.nus.sg/˜elecyq/riots.html
or send email to Adam Schwartz (adams@eecs.berkeley.edu) or
Yangquan Chen (yangquan@ee.nus.sg).

3. Watcom C/C++ compiler16 version 10 or up
(http://www.powersoft.com/products/languages/watccpl.html).

4. Matlab4.2c1 or Matlab 4.0

5. SplineToolbox versions 1.1a, 1993.11.25.

Important: If you want to use a math function such assin() in your optimal control problem, you must
include the pre-compiler directive

#include <math.h>

in your code.

It is recommended that you make a copy of the "simulate.mex" that comes supplied with RIOTS_95
before creating your own "simulate.mex" with the steps outlined here.Then, if you want to use the m-file
interface for some reason you can copy back the original version of "simulate.mex".

Step 1: Write the user-supplied C routines (refer to §4 for details) required for you optimal control prob-
lem. Several sample problems are supplied with RIOTS_95 in the "systems" directory. Additionally,
there is a file called "template.c" which you can use as a starting point for writing your own problem.

16 If you are using Matlab v. 4.0, only version 9.0 or up of the Watcom C compiler is required.

Section 8: Compiling RIOTS_95 80

Step 2: In the following, assume you have created a C code problem, located in your RIOTS_95/systems
directory, called "my_problem.c".Before executing these commands, save the version of "simulate.mex"
that comes distributed with RIOTS_95 to another file, say, "m_sim.mex". Then,if you want to use the m-
file interface later (in which case you can move "m_sim.mex" back to "simulate.mex"). Opena DOS box
in Windows and execute the following sequence of commands:

• ‘command /e:4096’ (to increase the size of the environment space.)

• ‘cd \riots_95’

• change relevant disk/directory setings in "compile.bat" and "cmex.bat" with a file editor.

• ‘cd systems’

• ‘compile my_problem.c’
‘linksimu my_problem.o’

These sequence of commands will generate a file called "simulate.mex" which is used by RIOTS_95 to
solve your problem.

Step 3: To use RIOTS_95 to solve your optimal control problem,

• Run Matlab and at the Matlab prompt, type:
>> path(path,’\riots_95’)
>> cd systems

Now you are ready to use RIOTS_95 to solve your problem.

The M-file interface .

As mentioned above, RIOTS_95 comes distributed to run user m-file programs.This allows users that do
not have the Watcom C compiler to use RIOTS_95. Them-file interface for RIOTS_95 can be produced
with the Watcom C compiler with the following steps executed in a DOS box:

• Compile "msyslink.c"

• Run "linksimu.bat"

With the m-file interface, the user only needs to provide "sys_*.m" m-files, but the solution time is much
longer than with C code.

Section 8: Compiling RIOTS_95 81

9. PLANNED FUTURE IMPROVEMENTS

This version of RIOTS was developed over a period of two years. Many desirable features that could
have been included were omitted because of time constraints.Moreover, there are many extensions and
improvements that we have envisioned for future versions. We provide here a synopsis of some of the
improvements currently being planned for hopefully, upcoming versions of RIOTS.

• Automatic Differentiation of user-supplied functions. This would provide automatic generation
of the derivative functionsDh, Dl andDl using techniques of automatic differentiation [17,18].

• Extension to Large-Scale Problems. The size of the mathematical programming problem created
by discretizing an optimal control problem (the way it is done in RIOTS) depends primarily on the dis-
cretization level N. The work done by the projected descent algorithm,pdmin, grows only linearly
with N and hencepdmin (andaug_lagrng) can solve very large problems.However, these programs

cannot handle trajectory constraints or endpoint equality constraints17 The main program in,riots, is
based on dense sequential quadratic programming (SQP).Hence,riots is not well-suited for high dis-
cretization levels. Thereare many alternate strategies for extending SQP algorithms to large-scale
problems as discussed in[4, Chap. 6].The best approach is not known at this time and a great deal of
work, such as the work in[19-22] as well as our on investigations, is being done in this area.

• Tr ajectory constraints. Our current method of computing functions gradients with respect to the
control is based on adjoint equations.There is one adjoint equation for each function.This is quite
inefficient when there are trajectory constraints because for each trajectory constraint there is, in
effect, one constraint function per mesh point.Thus, for an integration mesh withN + 1 breakpoints,
roughly N adjoint equations have to be solved to compute the gradients at each point of a trajectory
constraint. Analternate strategy based on the state-transition (sensitivity) matrix may prove to be
much more efficient. Also,it is really only necessary to compute gradients at points,tk, where the tra-
jectory constraints are active or near-active. The other mesh points should be ignored.Algorithms for
selecting the active or almost active constraint are present in[23,24] along with convergence proofs.

• Stabilization of Iterates. One of the main limitations of the current implementation of RIOTS is
that it is not well-equipped to deal with problems whose dynamics are highly unstable.For such prob-
lems, the iterates produced by the optimization routines in RIOTS can easily move into regions where
the system dynamics ‘‘blow-up’’ i f the initial control guess is not close to a solution.For instance, a
very difficult optimal control problem is the Apollo re-entry problem[25]. Thisproblem involves find-
ing the optimum re-entry trajectory for the Apollo space capsule as it enters the Earth’s atmosphere.
Because of the physics of this problem, slight deviations of the capsules trajectory can cause the cap-
sule to skip off the Earth’s atmosphere or to burn up in the atmosphere.Either way, once an iterate is a
control that drives the system into such a region of the state-space, there is no way for the optimization
routine to recover. Moreover, in this situation, there is no way to avoid these regions of the state-space
using control constraints.

This problem could be avoided using constraints on the system trajectories.However, this is a
very expensive approach for our method (not for collocation-based methods), especially at high dis-
cretization levels. Also,for optimization methods that are not feasible point algorithms, this approach
still might not work. An intermediate solution is possible because it is really only necessary to check
the trajectory constraints at a few points, called nodes, in the integration mesh.This can be accom-
plished as follows. Let tk be one such node.Then define the decision variable x∼ k,0 which will be

17Endpoint inequality constraints can be handled effectively with aug_lagrng by incorporating a suitable active constraint set strategy.

Section 9: Future Improvements 82

taken as the initial condition for integrating the differential equations starting at timetk. This x∼ k,0 is
allowed to be different than the valuexk of the state integrated up to timetk. Howev er, to ensure that
these values do, in fact, coincide at a solution, a constraint of the formgk(u) =. x∼ k,0− xk = 0 must be
added at each node.Note that, for nonlinear systems,gk(u) is a nonlinear constraint.The addition of
these node variables allows bounds on that states to be applied at each node point.This procedure is
closely related to the multiple shooting method for solving boundary value problems and is an inter-
mediate approach between using a pure control variable parameterization and a control/state parame-
terization (as in collocation methods).See [26]for a discussion of node placement for multiple shoot-
ing methods.

Other Issues and Extensions. Some other useful features for RIOTS would include:

• A graphical user interface. Thiswould allow much easier access to the optimization programs and
selection of options.Also, important information about the progress of the optimization such as error
messages and warnings, condition estimates, step-sizes, constraint violations and optimality conditions
could be displayed in a much more accessible manner.

• Dynamic linking. Currently, the user of RIOTS must re-linksimulate for each new optimal control
problem. Itwould be very convenient to be able to dynamically link in the object code for the optimal
control problem directly from Matlab (without having to re-link simulate). Thereare dynamic linkers
available but they do not work with Matlab’s MEX facility.

• For problems with dynamics that are difficult to integrate, the main source of error in the solution to
the approximating problems is due to the integration error. In this case, it would be useful to use an inte-
gration mesh that is finer than the control mesh.Thus, several integration steps would be taken between
control breakpoints.By doing this, the error from the integration is reduced without increasing the size
(the number of decision variables) of the approximating problem.

• The variable transformation needed to allow the use of a standard inner product on the coefficient
space for the approximating problems adds extra computation to each function and gradient evaluation.
Also, if the transformation is not diagonal, simple bound constraints on the controls are converted into
general linear constraints.Both of these deficits can be removed for optimization methods that use Hes-
sian information to obtain search directions.If the Hessian is computed analytically, then the transforma-
tion is not needed at all.If the Hessian is estimated using a quasi-Newton update, it may be sufficient to
use the transformation matrixM N or M á as the initial Hessian estimate (rather than the identity matrix)
and dispense with the variable transformation.We hav enot performed this experiment; it may not work

because the the updates will be constructed from gradients computed in non-transformed coordinates18.

• It may be useful to allow the user to specify bounds on the control derivatives. Thiswould be a sim-
ple matter for piecewise linear control representations.

• Currently the only way to specify general constraints on the controls is using mixed state-control tra-
jectory constraints.This is quite inefficient since adjoint variables are computed but not needed for pure
control constraints.

• Currently there is no mechanism in RIOTS for to directly handle systems with time-delays or, more
generally, integro-differential equations[29]. Thiswould be a non-trivial extension.

18With appropriate choice ofH0, quasi-Newton methods are invariant with respect to objective function scalings[27,28], but not coordinate
transformations (which is variable scaling).

Section 9: Future Improvements 83

• Add support for other nonlinear programming routines inriots.

• There have been very few attempts to make quantitative comparisons between different algorithms
for solving optimal control problems.The few reports comparing algorithms[30,31], involve a small
number of example problems, are inconclusive and are out of date.Therefore, it would be of great use to
have an extensive comparison of some of the current implementations of algorithms for solving optimal
control problems.

• Make it easy for the user to smoothly interpolate from data tables.

Section 9: Future Improvements 84

APPENDIX

This appendix describes several optimal control problem examples that are supplied with RIOTS_95
in the ‘systems’ directory. Control bounds can be included on the command line at run-time.See the file
‘systems/README’ for a description of the code for these problems.

Problem: LQR [10].

u
min J(u) =. ∫

1

0
0. 625x2 + 0. 5xu+ 0. 5u2 dt

subject to:

ẋ = 1
2 x + u ; x(0) = 1 .

This problem has an analytic solution given by

u* (t) = − (tanh(1− t) + 0. 5) cosh(1− t) / cosh(1) , t ∈∈ [0, 1] ,

with optimal costJ* = e2 sinh(2) / (1+ e2)2 ≈ 0. 380797.

Problem: Bang [13, p. 112].

u,T
min J(u,T) =. T

subject to:

ẋ1 = x2 ; x1(0) = 0 , x1(T) = 300

ẋ2 = u ; x2(0) = 0 , x2(T) = 0 ,

and

−2 ≤ u(t) ≤ 1 , \/ t ∈∈ [0,T] .

This problem has an analytic solution which is given by T* = 30 and

0 ≤ t < 20 20 ≤ t ≤ 30

u* (t) 1 −2
x1* (t) t2 / 2 − t2 + 60t − 600
x2* (t) t 60− 2t

Section 10: Example Problems 85

Problem: Switc h [13(pp. 120-123),32].

u
min J(u) =. ∫

1

0

1
2 u2 dt

subject to:

ẋ = v ; x(0) = 0 , x(1) = 0

v̇ = u ; v(0) = 1 , v(1) = −1

x(t) − L ≤ 0 , \/ t ∈∈ [0, 1] ,

with L = 1 / 9. This problem has an analytic solution.For any L such that 0< L ≤ 1 / 6, the solution is
J* = 4

9L with

0 ≤ t < 3L 3L ≤ t < 1 − 3L 1 − 3L ≤ t ≤ 1

u* (t) − 2
3L (1 − t

3L) 0 − 2
3L (1 − 1−t

3L)
v* (t) (1 − t

3L)2 0 (1 − 1−t
3L)2

x* (t) L(1 − (1 − t
3L)3) L L(1 − (1 − 1−t

3L)3)

Problem: Ra yleigh [33,34].

u
min J(u) =. ∫

2.5

0
x2

1 + u2 dt

subject to:

ẋ1(t) = x2(t) x1(0) = − 5
ẋ2(t) = − x1(t) + [1. 4 − 0. 14x2

2(t)]x2(t) + 4u(t) x2(0) = − 5

A constrained version of this problem is formed by including the state constraint

x1(2. 5)= 0 .

Problem: VanDerPol [33].

u
min J(u) =. 1

2 ∫
5

0
x2

1 + x2
2 + u2 dt

subject to:

ẋ1(t) = x2(t) x1(0) = 1
ẋ2(t) = − x1(t) + (1 − x2

2)x2(t) + u(t) x2(0) = 0

−x1(5) + x2(5) − 1 = 0 .

Section 10: Example Problems 86

Problem: Parabola [35].

u
min J(u) =. ∫

1

0
x2

1 + x2
2 + 0. 005u2 dt

subject to:

ẋ1 = x2 ; x1(0) = 0

ẋ2 = − x2 + u ; x2(0) = − 1

and

x2(t) − 8(t − 0. 5)2 + 0. 5≤ 0 , \/ t ∈∈ [0,T] .

Problem: Obstac le [36].

u
min J(u) =. 5x1(2. 9)2 + x2(2. 9)2

subject to:

ẋ1 = x2 x1(0) = 1
ẋ2 = u − 0. 1(1+ 2x2

1)x2 x2(0) = 1

−1 ≤ u(t) ≤ 1 , \/ t ∈∈ [0, 2. 9]

1 − 9(x1(t) − 1)2 − 


x2(t) − 0. 4

0. 3



2

≤ 0 , \/ t ∈∈ [0, 2. 9]

−0. 8− x2(t) ≤ 0 , \/ t ∈∈ [0, 2. 9] .

Section 10: Example Problems 87

Problem: God dard Rocket, Maxim um Ascent [37].

u,T
maxJ(u,T) =. h(T)

subject to:

v̇ =
1

m
(u − D(h, v)) −

1

h2
, D(h, v) = 1

2 CD Aâ 0v2eã (1−h) v(0) = 0

ḣ = v h(0) = 1

ṁ = −
1

c
u m(0) = 1 ; m(T) = 0. 6

0 ≤ u(t) ≤ 3. 5 , \/ t ∈∈ [0,T] .

whereä = 500,CD = 0. 05andAâ 0 = 12, 400.The variables used above hav ethe following meanings:

v vertical velocity
h radial altitude above earth (h = 1 is earth’s surface)
m mass of vehicle
u thrust
c specific impulse (impulse per unit mass of fuel burned,c = 0. 5)
â air density (â = â 0eã (1−h))
q dynamic pressure (q = 1

2 â v2)
D drag

The endpoint constraintm(T) = 0. 6means that there is no more fuel left in the rocket. Anotherversion
of this problem includes the trajectory constraint

Aq(t) ≤ 10 , \/ t ∈∈ [0,T] .

This is a upper bound on the dynamic pressure experienced by the rocket during ascent.

Section 10: Example Problems 88

REFERENCES

1. A. Schwartz and E. Polak, “Consistent approximations for optimal control problems based on
Runge-Kutta integration,” SIAM J. Control Optim. 34(4)(1996).

2. A. Schwartz and E. Polak, “Runge-Kutta discretization of optimal control problems,” i n Proceed-
ings of the 10th IFAC Workshop on Control Applications of Optimization, (1996).

3. A. Schwartz and E. Polak, “A family of projected descent methods for optimization problems with
simple bounds,” J. Optim. Theory and Appl.91(1)(1997).

4. A. Schwartz, “Theory and Implementation of Numerical Methods Based on Runge-Kutta Integra-
tion for Solving Optimal Control Problems,” Ph.D. Dissertation, Dept. of Electrical Engineering,
University of California, Berkeley (1996). Avaiable from
http://robotics.eecs.berkeley.edu/˜adams

5. E.Polak, “On the use of consistent approximations in the solution of semi-infinite optimization and
optimal control problems,” Math. Prog. 62pp. 385-415 (1993).

6. Carlde Boor, A Practical Guide to Splines,Springer-Verlag, New York (1978).

7. J.D. Lambert,Numerical Methods for Ordinary Differential Systems,John Wiley and Sons, Eng-
land (1991).

8. K. Radhakrishnan and A. C. Hindmarsh, “Description and use of LSODE, the Livermore Solver for
Ordinary Differential Equations,” NASA Reference Publ. 1327 (1993).

9. L. R. Petzold, “Automatic selection of methods for solving stiff and nonstiff systems of differential
equations,” SIAM J. Sci. Stat. Comput.4 pp. 136-148 (1983).

10. W.W. Hager, “Rates of convergence for discrete approximations to unconstrained control problems,”
SIAM J. Numer. Anal. 13(4) pp. 449-472 (1976).

11. L. S. Jennings, M. E. Fisher, K. L. Teo, and C. J. Goh, “MISER3: Solving optimal control prob-
lems---an update,” Advances in Engineering software14(13) pp. 190-196 (1991).

12. P. E. Gill, W. Murray, and M. H. Wright,Practical Optimization,Academic Press, London (1981).

13. A. E. Bryson and Y. Ho, Applied Optimal Control, Hemisphere Publishing Corp. (1975).(revised
printing)

14. D. J. Bell and D. H. Jacobson,Singular Optimal Control Problems,Academic Press, London
(1975).

15. L. T. Biegler and J. E. Cuthrell, “Improved infeasible path optimization for sequential modular sim-
ulators--II: the optimization algorithm,” Computers & Chemical Engineering9(3) pp. 257-267
(1985).

16. O. Stryk, “Numerische Losung optimaler Steuerungsprobleme: Diskretisierung, Parameteropti-
mierung und erechnung der adjungierten Variablen,” Diploma-Math., Munchen University of Tech-
nology, VDI Verlag, Germany (1995).

17. A.Griewank, D. Juedes, and J. Utke, ADOL-C: A package for the automatic differentiation of algo-
rithms written in C/C++, Argonne National Laboratory, ftp://info.mcs.anl.gov/pub/ADOLC
(December 1993).

18. A. Griewank, “On automatic differentiation,” Preprint MCS-P10-1088, Argonne National

References 89

Laboratory, ftp://info.mcs.anl.gov/pub/tech_reports/reports (October 1988).

19. J.T. Betts and P. D. Frank, “A sparse nonlinear optimization algorithm,” J. Optim. Theory and Appl.
82(3) pp. 519-541 (1994).

20. J.T. Betts and W. P. Huffman, “Path-constrained trajectory optimization using sparse sequential
quadratic programming,” J. Guidance, Control, and Dynamics16(1) pp. 59-68 (1993).

21. HenrikJonson, “Newton Method for Solving Non-linear Optimal Control Problems with Genereal
constraints,” Ph.D. Dissertation, Linkoping Studies in Science and Technology (1983).

22. J.C. Dunn and D. P. Bertsekas, “Efficient dynamic programming implementations of Newton’s
method for unconstrained optimal control problems,” J. Optim. Theory and Appl.63(1) pp.23-38
(1989).

23. J.E. Higgins and E. Polak, “An å -active barrier-function method for solving minimax problems,”
Appl. Math. Optim.23pp. 275-297 (1991).

24. J.L. Zhou and A. L. Tits, “An SQP algorithm for finely discretized continuous minimax problems
and other minimax problems with many objective functions,” to appear in SIAM J. Optimization, ().

25. O.Stryk and R. Bulirsch, “Direct and indirect methods for trajectory optimization,” Annals of Oper-
ations Research37pp. 357-373 (1992).

26. U.Ascher, R. Mattheij, and R. Russell,Numerical Solution of Boundary Value Problems for Ordi-
nary Differential Equations,Prentice Hall, Englewood Cliffs, NJ (1988).

27. D.F. Shanno and K. H. Phua, “Matrix conditioning and nonlinear optimization,” Math. Prog. 14pp.
149-160 (1978).

28. S.S. Oren, “Perspectives on self-scaling variable metric algorithms,” J. Optim. Theory and Appl.
37(2) pp. 137-147 (1982).

29. F.H. Mathis and G.W. Reddien, “Difference approximations to control problems with functional
arguments,” SIAM J. Control and Optim.16(3) pp. 436-449 (1978).

30. D. I. Jones and J. W. Finch, “Comparison of optimization algortihms,” Int. J. Control 40pp.
747-761 (1984).

31. S. Strand and J. G. Balchen, “A Comparison of Constrained Optimal Control Algorithms,” pp.
439-447 inIFAC 11th Triennial World Congress, , Estonia, USSR (1990).

32. O. Stryk, “Numerical solution of optimal control problems by direct collocation,” International
Series of Numerical Methematics111pp. 129-143 (1993).

33. N. B. Nedeljković, “New algorithms for unconstrained nonlinear optimal control problems,” IEEE
Tr ans. Autom. Cntrl. 26(4) pp. 868-884 (1981).

34. D.Talwar and R. Sivan, “An Efficient Numerical Algorithm for the Solution of a Class of Optimal
Control Problems,” IEEE Trans. Autom. Cntrl. 34(12) pp. 1308-1311 (1989).

35. D. H. Jacobson and M. M. Lele, “A transformation technique for optimal control problems with a
state variable inequality constraint,” IEEE Trans. Optim. Cntrl.14(5) pp. 457-564 (1969).

36. V. H. Quintana and E. J. Davison, “Clipping-off gradient algorithms to compute optimal controls
with constrained magnitude,” Int. J. Control 20(2) pp. 243-255 (1974).

37. H.Seywald and E. M. Cliff, “Goddard Problem in Presence of a Dynamic Pressure Limit,” J. Guid-
ance, Control and Dynamics16(4) pp. 776-781 (1993).

References 90

References 91

