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Abstract

THEORY AND IMPLEMENT ATION OF NUMERICAL METHODS B ASED
ON RUNGE-KUTTA INTEGRATION FOR SOLVING OPTIMAL CONTR OL PROBLEMS

by
Adam Lowell Sowartz

Doctor of Philosopy in Electrical Engineering
University of California at Ber&ley
Professor Elijah Polak, Chair

This dissertation presents theory and implementations of numerical methods for accurately
and eficiently solving optimal control problemslhe methods we consider are based on solving
a ®quence of discrete-time optimal control problems obtained usiplicie fixed step-size
Runge-Kitta intggration and finite-dimensional B-spline control parameterizations to discretize
the optimal control problem under considerati@gdther discretization methods such as Easler
method, collocation techniques, or numerical implementations, uaimaple step-size numerical
integration, of specialized optimal control algorithms are less accurate acieénefthan dis-
cretization by rplicit, fixed step-size Rungetitta for mag problems. Thiswork presents the
first theoretical foundation for Rungedifa discretization.The theory preides conditions on the
Runge-Kitta parameters that ensure that the discrete-time optimal control problems are consistent
approximations to the original problem.

Additionally, we derive a umber of results which help in thefiefent numerical implemen-
tation of this theory These include methods for refining the discretization mesh, formulas for
computing estimates of irgeation errors and errors of numerical solutions obtained for optimal
control problems, and a method for dealing with oscillations that arise in the numerical solution
of singular optimal control problemslhese results are of great practical importance in solving
optimal control problems.

We dso present, and pve cornvergence results foa family of numerical optimization algo-
rithms for solving a class of optimization problems that arise from the discretization of optimal
control problems with control bound$his family of algorithms is based upon a projection eper
ator and a decomposition of search directions intogarts: one part for the unconstrained sub-
space and another for the constrained subsp@bies decomposition alles the correct aate



constraint set to be rapidly identified and the rate off@gence properties associated with an
appropriate unconstrained search direction, such as those produced by a limited memory quasi-
Newton or conjug@te-gradient method, to be realized for the constrained prollaealgorithm

is extremely eficient and can readily savroblems iwolving thousands of decisiorasiables.

The theory we hae devdoped praides the foundation for our sofare package RITS.
This is a group of programs and utilities, written mostly in C and designed as a toolbox for Mat-
lab, that prgides an interacte ewironment for solving a ery broad class of optimal control
problems. Amanual describing the use and operation of 3@ included in this dissertation.
We felieve ROTS to be one of the most accurate arfitieht programs currentlyvailable for
solving optimal control problems.

Professor Elijah Polak
Dissertation Committee Chair
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We ae geneally the better pesuaded by thesasons we dis-
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Chapter 1

INTRODUCTION

1.1 NUMERICAL METHODS FOR SOLVING OPTIMAL CONTROL PROBLEMS

Numerical methods for solving optimal control problemgehaolved significantly wer the
past thirty-four years since Pontryagin and his students presented their celebrated maximum
principle [1]. Most early methods were based on finding a solution that satisfied the maximum
principle, or related necessary conditions, rather than attempting a direct minimization of the
objective function (subject to constraints) of the optimal control problé&ar.this reason, meth-
ods using this approach are called indirect meth&oglanations of the indirect approach can be
found in[2-6].

The main dravback to indirect methods is thekteeme lack of robstness: the iterations of
an indirect method must start close, sometinegg tlose, to a local solution in order to sotire
two-point boundary alue subproblemsAdditionally, snce first order optimality conditions are
satisfied by maximizers and saddle points as well as minimizers, there is no reason, in general, to
expect solutions obtained by indirect methods to be minimizers.

Both of these dmabacks of indirect methods areebcome by so-called direct methods.
Direct methods obtain solutions through the direct minimization of the algdatiction (subject
to constraints) of the optimal control probleitn. this way the optimal control problem is treated
as an infinite dimensional mathematical programming problérhere are tw distinct
approaches for dealing with the infinite dimensional aspect of these problbaméirst approach
develops specializedonceptualklgorithms, and numerical implementations of these algorithms,
for solving the mathematical programA&.conceptual algorithm is either a function space analog
of a finite dimensional optimization algorithm or a finite dimensional algorithm (obtained by
restricting the controls to a finite dimensional subspace of the control space) that requires infinite
dimensional operations such as the solution déédihtial equations and irgeals. Animplemen-
tation of a conceptual algorithm accounts for errors that result when representing elements of an

infinite dimensional functions space with finite dimensional approximations and the errors
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produced by the numerical methods used to perform infinite dimensional operdtmrs. are
mary examples of conceptual algorithm for solving optimal control problem, some with and
some without implementatiofg-31].

The conceptual algorithm approach for solving optimal control problems has seriaus dra
backs. Firstcustomized softare for controlling the errors produced in the numerical approxi-
mations of infinite dimensional functions and operations must be incorporated into the implemen-
tation of a conceptual algorithniMore seriously because functionweluations are performed
only approximately the function gradients used by mathematical programmingusofaiyi not
be coordinated with those same functiofifat is, the gradients will only be approximations to
the denatives o the functions.This mean, forxxample, that it is possible that thegagve d a
function gradient may not be a direction of descent for the approximation of that funtkirsn.
problem is gacerbated as a stationary point is approachedelated problem is that a certain
amount of precision in the functiorvatuations is required to ensure successful line searches.
Together these &cts mean that, in practice, high precision in numerical operations such as inte-
gration is requiredwen in early iterations of the optimization procedur8ince high precision in
early iterations does not contiife to the accurgcof the final solution, this requirement neak
the implementation of conceptual algorithm figéént for most problems.

An alternate direct method approach is one which we term consistent approximétions.
the consistent approximations approach, the optimal control is obtained by solving a sequence of
finite dimensional, discrete-time optimal control problgmsat are increasingly accurate repre-
sentations of the original, continuous-time probléFhe solutions of the approximating, discrete-
time optimal control problems can be obtained using standard, finite dimensional mathematical
programming techniguesUnder suitable conditions, solutions of the approximating problems
corverge to a olution of the original problemIn this sense, such discrete-time optimal control
problems are calledonsistent apmximationsto the original problem.

The first rigorous deslopments of algorithms based on solving finite dimensional approxi-
mating problems used Eulerivethod and piesgise constant control representations (which
results in a finite dimensional control parameterization) to discretize the original problem (see the
introduction to Chapter 2 for referencegyom a numerical analystjoint of view, the choice of
Euler's method may seem strange since Eslenethod is an xtremely ineficient method for
solving diferential equations.But there are reasons for choosing Eslenethod as a

TSpeaking more accuratete discretized problems need not be a discrete-time optimal control prolffeniastance, if the
controls are represented as finite dimensional B-splines, the decsiables of the discretized problems are splinefioderfts, not
control \alues at discrete times.
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discretization procedure for optimal control problerkgst, up until this werk, there has been no
theory supporting the use of itesailigherorder intgration methods in the construction of con-
sistent approximationsSecond, only recently has it been demonstrated that there can be an
advantage to using high@rder discretization methods for solving optimal control problefise

use of higheorder discretization methods for solving optimal control problems remains aa acti
area of researchit is difficult to demonstrate a theoretical adtage to using higher order meth-
ods rather than Euler’'methods when solving general, constrained optimal control problems.
However, mary optimal control problems that arise in practice areaut,fsohed much more &f

ciently with higherorder methods.

Within the catgory of direct methods based on the idea of consistent approximations, there
is a further sub-classification that helps to establish where otlr stands in relation to other
methods. Thisub-classification specifies Wwdhe discretization of an optimal control problem
into a finite dimensional approximating problem is accomplished: via collocation (or more gener
ally, a Galerkin approximation) or via itera® integration. Currentlythe most popular dis-
cretization scheme is based on collocation and methods similar in spirit to
collocation [16-18,32-41]In collocation methods, the system offeintial equations describing
the dynamic system is replaced by a system of equations that represent collocation conditions to
be satisfied at a finite number of time point$e resulting mathematical progranvaétves not
only the control parameters as decisi@niables bt also a lage number of additionalaviables
that represents theale of state ariables at mesh pointsCollocation schemes feir several
advantages \eer iterative integration schemes:

1. Itis easier to pnee wrnvergence and order of ceergence results.

2. Someresults for the order of erroas a function of the discretization \lel, between solu-
tions of the approximating problems and solutions of the original problem (nafoely
unconstrained optimal control problems) are superior to other scligdhes

3. Certaindifficulties inherent to some optimal control problems, such dslgférential equa-
tions and highly unstable dynamics, are greatly mi&d in collocation schemes.

4. Simplebounds on stateaviables translate into simple bounds on the decisioiables of
the mathematical program.

5.  Functiongradients are easier to compute sincg tleenot require the devétive d the state
with respect to the controls.

However, relative © iterative integration, collocation schemesveasrious dravbacks as well:
1. Theapproximating problems are significantlydar at a gien discretization lgel due to the

inclusion of state ariables as decision parameters.
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2. Theapproximating problems are significantly harder to ediecause of the addition of a
large number of (nonlinear) equality constraints that represent the collocation conditions.

3. Theaccurag of solutions obtained by solving the approximating problems can bevguahe
inaccurate due to the presence of the collocation constraints.

4. If the numerical algorithm for solving the approximating problems is terminated prematurely
the solution may not be useful since the collocation conditions will not be satisfied.

Because of these disatages, solutions obtained using a collocation scheme oftentthbe
subsequently refined using an indirect solution mefjod

The work in this thesis is based on discretizing optimal control problems ugpligie
fixed step-size Rungetitta intgration techniquesThe adantage of this schemer@ colloca-
tion schemes is that the approximating problems that result can leel sety eficiently and
accurately On the other hand, some of the features listedval® advantages associated with
collocation are sacrificedSpecifically convergence results are more fitiilt to prove for the
Runge-Kitta method and, in the case of unconstrained problems, the order of error for solution of
the approximating problems iswer (se¢42] and Proposition 4.6.2)Also, it is quite comenient
from a programming point of wethat state ariable bounds become bounds on the decisaoir v
ables of the mathematical program (achage 4).However, this adwantage is more thanfeét by
the addition of the system of equality constraints representing the collocation condtiimasy,
the dificulties of solving problems with highly unstable dynamics can also be handled when
using eplicit Runge-Kutta intggration. Amethod for doing so is discussed in the Chapter 6.

As far as we knw, the work reported in this thesis represents the ordykwon consistent
approximation schemes using Rungetid intgration. Thusat the \ery least, our wrk comple-
ments the wrk of other authors that deal with collocation schentagt further we believe that
our approach has significant theoretical and practicarddges that will makit, with suficient
development, a leading approach to solving optimal control problems.

-4 - Chap. 1



1.2 CONTRIBUTIONS TO THE STATE-OF-THE-ART

The original goal of this researchas/simply to declop a fast and accurate sofane pack-

age for solving optimal control problems usinglit Runge-Kutta integration. Inthe process

of writing this softvare we heae, by necessitydevdoped a strong theoretical foundation for our

discretization approach as well constructingesd nev algorithms for \arious types of computa-

tion. Thefollowing is a concise summary of the contitibns praided by this vork to the state-

of-the-art in numerical methods for solving optimal control problems:

Provides the first corergence analysis and implementation theory for discretization methods
based on RungeiKta intgration. Specificallyconditions on the parameters of the Runge-
Kutta method are presented that ensure, for instance, that stationary points of the discretized
problems can only carrge to gationary points of the original problem.

Derives a ron-Euclidean metric needed for the finite-dimensional optimization of the approxi-
mating problems and presents a coordinate transformation whials @l&uclidean metric to

be used.Without this metric, serious ill-conditioning can be introduced into the discretized
problem.

Improves yoon the preiously knavn bound for the error in the solution of the approximating
problems as a function of the discretizatiomeldor RK4 (the most common fourth-order
Runge-Kitta intgration method) when solving unconstrained optimal control probl&imis.

result, along with the already kwa bounds for a first, second and third order RungteK
method are xdended to the case where the finite dimensional controls are represented by
splines.

Presents a ve very eficient and rohst numerical algorithm, based on the projecteditie
method of Bertsekas, for solving a class of mathematical programming problems with simple
bounds on the decisioanables.

Devdops a nev method for computing accurate estimates of the error between the solutions
computed for the approximating problems and solutions of the original proflam.esti-

mate does not requiie priori knowledge of error bounds andovks for problems with state

and control constraints.

Devdops a completely e method for numerically solving singular optimal control prob-
lems. Thismethod is designed to eliminate undesirable oscillations that occur in humerical
solutions of singular control problems.

Presents our softare package called RIS, based on the theory in contained in this thesis,
for solving optimal control problemsAlthough there are mgnimprovements that can be
made to RIS, it is already one of theadtest, most accurate and easiest to use programs
available for solving optimal control problems.
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1.3 DISSERTATION OUTLINE

The oganization of this dissertation folles a progression leading from basic theoretical
foundations of discretizing optimal control problems to the implementation of aasefpackage
for solving a lage class of optimal control problem$he theoretical foundation is presented in
Chapter 2.Chapter 2 bgins with a discussion of the concept of consistent approximations as
defined by Polajd3]. Polaks definition of consistent approximationstends earlier definitions,
namely that of Danielgl4], that were concerned only with a@ngence of global solutions of the
approximating problems to global solutions of the original probl&éhe earlier definitions were
therefore of limited use since optimization algorithms compute stationary points, not global solu-
tions. Polaks dcefinition of consistencdeals with stationary points and local minima as well as
global solutions.The theory of consistent approximations is used teldp a framevork for dis-
cretizing optimal control problems with RungeHia intgyration. Themain results in Chapter 2
shaw that the approximating problems are consistent approximations to the original optimal con-
trol problem if the Runge-#tta method satisfies certain conditions in addition to the standard
conditions needed for consistent oation of diferential equationsOnce the consistepcesult
is established, the ceergence results prxided by the theory of consistent approximations can be
invoked. In the process of constructing consistent approximations based on Rutigedi§-
cretization, we sha that a non-Euclidean inn@roduct and norm, depending on the basis used
for the finite dimensional control subspaces, must be used for the space of conficibotsef
upon which the finite dimensional mathematical programs that results from the discretization are
defined. Vithout this non-Euclidean metric, serious ill-conditioning can resilé dso shav
how a mordinate transformation can be used to eliminate the need for the non-Euclidean inner
product and normThe results are thenxtended to control representations based on splines.

In Chapter 3, we present ary eficient and rohst optimization algorithm for solving finite
dimensional mathematical programming problems that include simple bounds on the decision
variables. Suclproblems arise from the discretization of optimal control problems with control
bounds. InChapter 4, other important numerical issues are addreSdeske issues include
() obtaining bounds on the error of solutions to the approximating problems based on spline con-
trols, (ii) developing heuristics for selecting the igtation order and control representation
order (iii) providing methods for refining the discretization me@h), providing a computable
error estimate for solutions of the approximating problems(andiealing with the numerical
difficulties that arise when solving singular optimal control problevis.dso present numerical
data to support our claim that implementations of conceptual algorithms digeénetompared
to the consistent approximations approach to solving optimal control problems.
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The net chapter Chapter 5, contains the useranual for RIOS. RIOTS is our software
package, desloped as a toolbox for Matlgbfor solving a ery broad class of optimal control
problems. Thiglass includes problems with multiple objeetfunctions, fixed or free final time
problems, problems withaviable initial conditions and problems with control bounds, endpoint
equality and inequality constraints, and trajectory constraifitgee users manual includes a
mathematical description of the class of problems that can be handled, a series of sample sessions
with RIOTS, a complete reference guide for the programs inTB|@planations of important
implementation details, and instructions for installing RBO Chaptel6, presents our conclu-
sions and ideas for future researdfinally, there are tw gopendices. Thdirst contains the
proofs of some of the results in Chapter 2 and the second describesxaompéeeptimal control
problems that we use, primarily in Chapter 4, for numerixa¢ements.

T Matlab is a scientific computation and visualization program designed by The btag)\Wc.
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Chapter 2

CONSISTENT APPROXIMATIONS FOR OPTIMAL CONTROL
PROBLEMS BASED ON RUNGE-KUTTA INTEGRATION

2.1 INTRODUCTION

In this Chapterwe establish the theoretical foundation of our method for numerically solv-
ing optimal control problemsSpecifically we consider approximations to constrained optimal
control problems that result from numerical solving théedgtial equations describing the sys-
tem dynamics using Rungedia intggration. W dhow that there is a class of higher order
explicit Runge-Kutta (RK) methods that pvale consistent apmximationsto the original prob-
lem, with consistencdefined according f@3]. Consequentlywe ae assured that stationary
points of the approximating problems gerge to gationary points of the original problem, and
that global solutions (or strict local solutions with a namighing radius of attraction) of the
approximating problems cwerge to global (or local) solutions of the original problem, as the
step-size of the RK method is decreased.

The theory of consistent approximations introduce®] requires that the approximating
problems be defined on finite dimensional subspaces of the control space to which RK methods
can be rtended. Theselection of the control subspaceteets both the accurpof numerical
integration and the accunaavith which solutions of the original problem are approximated.
Once the approximating problems are defined, their numerical solution is carried out by means of
standard mathematical programming algorithms in the space dicmods associated with the
bases defining the control subspacé&e mnstruct tvo such families of control subspace3he
“natural’ basis functions for oneafmily are pieceise polynomial functions, and for the other
piecavise constant functionsAlso, B-splines preide a basis for a subspace of pigise polyno-
mial functions. None of these sets of basis functions is orthonormdahce, to preseevthe L,
inner product and norm used in the control subspace, a non-Euclidean inner product and norm
must be used in the associated space officgits. Riling to do so introduces ahanged
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metric” effect that can addrsely afect the performance of algorithm3he possible serity of

this phenomenon is demonstrated by our computational results in Secfiorrénove the need

to modify nonlinear programming sofiie written for problems defined on a Euclidean space,

we introduce coordinate transformations that change our original bases in the control space to an
orthonormal set and change the associatediciesft space to a Euclidean space.

Daniel [44]presents one of the first attempts to characterize, in a generaifvedgeon-
sisteny of approximations to an optimization problem as well as an application of this frame-
work to approximations of optimal control problems obtained using the Eulgratitn formula.

It can be shwn that Daniek conditions for consistenycimply epicowergence [45,46]j.e., the
corvergence, in the Kratovski sens@d7], of the constrained epigraphs of the approximating
problems to the constrained epigraph of the original problEpicorvergence ensures coer-
gence of the global minimizers (or strict local minimizers with a remmishing radius of attrac-
tion) of the approximating problems to global (or local minimizers) of the original problem.

Polak, in[43], characterizes first order optimality conditions in terms of zeraptirhality
functions To define consistenycof approximations, he augments the requirement of epe&en
gence of the approximating problems with a related requirement for their optimality functions.
As a result, consistencin the Polak sense, ensureswagence of global (local) solutions, and
stationary points, of the approximating problems to global (local) solutions, and stationary points,
of the original problem.Furthermore, the Polak definition of consistenudirectly imposes the
requirement that the mathematical characterization of the constraints of the approximating prob-
lems satisfy certain congruence conditions, and thavatiess o the approximating problem
functions comerge o those of the original problenin addition to a definition of consistgnave
find in[43] diagonalization stratges, in the form of master algorithms, that call nonlinear pro-
gramming algorithms as subroutine¥hese algorithms enable one tdiaéntly obtain an
approximate, numericakblution” to an original infinite dimensional problem.

With the &ception of[44] and[43], the analysis of the approximating properties of numeri-
cal integgration techniques (seeg., [43,48-56] ) in optimal control is not carried in the frame-
work of a general theoiry Corvergence of global solutions, or in some cases, of stationary
points, of approximating problems obtained using Eulegmaten to those of the original prob-
lem was established [{43,44,48-50,53-55]. Ofhese, perhaps the mostensve treatment can
be found if54]. The rate of comergence of stationary points of approximating problems,
obtained from discretization of unconstrained optimal control problems using a class of RK meth-
ods, to those of the original problenasvexplored in[42].

T This is also true for collocation techniques (s=®, [4,18,33,35,36] ).
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Organization. This chapter is ganized as follavs. Sectior2 summarizes the theory of con-
sistent approximationsSection 3 defines the optimal control problem angldes an optimality
function for it. In section 4 the approximating problems are constructed and egigemce of

the approximating problems is peal. In section 5, optimality functions for the approximating
problems are dared and are shan to hypocorverge to the optimality function for the original
problem. Thiscompletes the proof that the approximating problems are consistent approxima-
tions to the original problemSection 6 introduces a transformation which defines orthonormal
bases for the control subspaces and presents a ratevefgemte result for the most commonly
used RK method, RK4Some numerical results are also includédnally, in Section 7 the
results arexdended to control subspaces based on splines.

2.2 THEORY OF CONSISTENT APPROXIMATIONS

Let #be a normed linear space é®d] #a cornvex ®t and consider the problem
P 7%gwm (2.1a)

wherey : B - R is (at least) laver semi-continuous, and [ B is the feasible setNext, let
N ={1,23,--}, letN be an infinite subset o] and let{ #\ } nmn be a &mily of finite
dimensional subspaces #&fsuch thatty, U Hy,, for all N, No[II N such thatN; < N,. Now
consider admily of approximating problems

Py ﬂ@&ww,NmN, (2.1b)

whereyy : Hy - R is (at least) laver semi-continuous, arlehy O #Hy N B.

In [43] we find a characterization of the consistentthe approximating problen3y, in
terms of tvo concepts. Thdirst is epicomergence of thePy to P[45] which can be shvn to be
equiaent to Kuratavski corvergence [47]of the restricted epigraphs of the cost functions of the
approximating problems to the restricted epigraph of the original proligmcorvergence does
not involve cerivatives o the cost function nor the specific description of the constraint sets,
hence it is a kind ofZero-order” property The second concept consists of the characterization
of stationary points as zeros of aoptimality function’ and a kind of upper semi-continuity
property of the optimality functions of the approximating proble@®gtimality functions do
depend on deratives and the specific description of the constraint set, hengeattk important
first-order and structural information.
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Definition 2.1.  We will say that the problems in tharhily { Py} noon COrverge eigraphi-

cally (or epicorverge) to P (Py = P) if

() for every plII F, there gists a sequenc€ny } nmon, With g0 Fy, such thatyy - 7 and
lim yn(7n) < w(n);

(b) for every infinite sequence 7y} vk, K O N, satisfying [0 Fy for all NOO K and
nn - 1, we havethatn(D F and limyp  wn(7n) = v (n). O

There are tw subsets imolved in our formulation of this definitionThe subseN is used to pro-
vide nesting of the finite dimensional subspats The subseK [ N is required so that Defi-
nition 2.1 is equialent to Kuratowvski corvergence. Thisis because, not only is the sequence
{ nn } parameterized b, but so are the problems in the sequefiéy, }.

In [43,45,46]we find the follaving result:

Theorem 2.2. Suppose thaPy =P (@) If, for NOO N, 77y is a global minimizer oPy,
and7 is ary accumulation point of the sequenéé y } NN, then7 is a global minimizer oP;
(b) if, for NOIO N, 7 is a strict local minimizer oPy whose radius of attraction is bounded

away from zero, andy is ary accumulation point of the sequenéé y } noon, then? is a local
minimizer of P. O

Epigraphical covergence does not eliminate the possibility of stationary poiniofon-
verging to a non-stationary point & a most incowenient outcome from a numerical optimiza-
tion point of viev. For example, let#/= R? with 7 = (x,y), and letf () = fn(7) = (x - 2)%,
NI N. Choose

F={(x,yY)DOR?|x?+y>-2<0}, (2.2a)
Fn = {(Y)DR? [ (x-y)2(%+y?>-2)<0, x> +y><2+1/N}, NOON. (2.2b)

Then we see th&y 2P Nevatheless, the point (1) is feasible and satisfies theJehn opti-
mality condition for allPy, but it is not a stationary point for the probléhfsee Figure 2.1)The
reason for this is an incompatibility of the constraint $g{swith the constraint sdt, which
shavs up only at the iel of optimality conditions. Hypotheses precluding this pathology
least for first order non-stationary points, were introducg¢d3husing optimality functions as a
tool for ensuring a kind offirst order’ approximation result that implicitly enforces a@gence
of derwvatives and restricts the forms chosen for the description of theFsatslF .
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stationary point
for approximating
problem

<

optimal point for
original problem

Fig. 2.1: Graph of the feasible geons for the approximating problems sliing that the station-
ary points for the approximating problems eange t the point (1,1) which is a non-stationary
point for the original problemThe arrovs around (1,1) indicate the gradients (translated from
the origin) for the tw constraint functions and the objeifunction.

Definition 2.3.  We will say that a functio® : B - R is an optimality functiorfor P if (i) ¢()
is (at least) upper semi-continuo(®), 6(n) < 0 for all 1 B, and (iii) for (I F, 6(7) = 0if 7
is a local minimizer folP. Similarly, we will say that a functiordy : Hy — IR is an optimality
functionfor Py if (i) on(Dlis (at least) upper semi-continuo(igy &y (r7y) < 0 for all 7y Hy,

and(iii) if 7D Fy is a local minimizer foPy thengy(7y) = 0 O

Definition 2.4.  Consider the problenB, Py, defined in (2.1a,b).Let 8(0), o5 (0, NI N, be
optimality functions forP, Py, respectiely. We will say that the pairsRy, ), in the sequence

{(Pn,6N)} non are consistent apmximationsto the pair P, 9), if (i) Py = P, and (ii) for
ary sequence §n} nmk, K O N, with 700 Fy for all NOD K, such thatyy - 7, the opti-
mality functions of the approximating problems satisfy the condition
lim oy (ny) < 6(n) - (2.3)
O
Note that parii) of Definition 2.4 rules out the possibility of stationary points (points such
thatgy (7y) = 0) for the approximating problems a@rging to non-stationary points of the orig-
inal problem. In the sequel, we will pre a $ronger condition than is required by Definition 2.4,
namely Kuratovski corvergence of the ypographs ofgy (0l to the typograph ofo(D (that is,
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Epi

-0y — —0).

In addition to the characterization of consisterthe theory of consistent approximations
in[43] includes various master algorithm models forfigiently solving problems such &2
Given a leved of discretization defined b, the master algorithms construct an approximating
problemPy, execute a nonlinear programming or discrete-time optimal control algorithm as a
subroutine for a certain number of iterationsRy, and then increas®l. Then the process is
repeated. & specific gamples, sef5,57].

2.2.1. Overview of the construction of consistent appr oximations f or optimal
contr ol problems.

In the remaining sections of this chapter we proceed to construct approximating problems, based
on Runge-Kitta inteyration, to a general class of optimal control problems and #fat the are
consistent approximationg.o quide the readewe provide here an outline of the diopment, in

a dightly re-arranged ordefor a simple class of unconstrained optimal control problems with a
smooth objectie function.

We dart by defining the optimal control problenm this oserview we will just consider
unconstrained problems with &#d initial conditions of the form

P min f(u)
where f (u)[ IR is the objectie function defined by
f(u) =(x"(1)) (2.5a)
andx"(t)(J IR" is the solution of the system of fifential equation
x = h(x,u), tI[0,1] ; x(0)=¢&. (2.5b)

Hence, the objeateé is a function of the final stat&"(1) which depends on the contnalll U,
u(t)@ R™. Note that other forms of optimal control problems such as the Bolza and Lagrange
forms can be corerted into this form.

ProblemP is defined wer the feasible sat) of controls. In the sequel, we will alls U to
include control constraintaubhere we will assume that it does ndtie choice ol is compli-
cated by thedct that while standard optimality conditions fmare &pressed in thé.,-norm,
f (D) is dfferentiable inL [0, 1] but not in L,[0, 1]. To overcome this dificulty, we define the
pre-Hilbert space

Loo2[0, 1= (L0, 1], (00, , |0k) (2.6)

which consists of elements bf)[0, 1] but is endowved with thel, innerproduct and normThen
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we allov U O Lg ,[0, 1]. SinceP is an unconstrained problem, we can choose for its optimality
function

o(u) = - I0f (W (2.7)

because- | f (u)J? is continuous, rgetive \valued and zero & if T is a local minimizer of
since a first order necessary condition for optimality & O f (U) = O (that is,0f (U)(t) = O for

td [0, 1] a.e.). Thegradientd f (u) can be computed according to standard formulas which are
presented in Section 3.

The net step is to construct the approximating problems through some discretization proce-
dure. Oumethod iwolves(i) integrating the difierential equation numerical using Rungetta
(RK) integration and(ii) replacing the infinite dimensional control détwith a finite dimen-
sional approximating séty. A RK integration method is specified by a set of parameters collec-
tively called the Butcher arrayThe Butcher arrgyA = [c, A, b'], consists of three sets of param-
eters. The parameters relate to sampling instances where the Rifétiten ealuates the right-
hand side of (2.5b) and theparameters are relai weights assigned to each of thesala-
tions. TheA parameters &ct the order of carergence of the RK methodubdo not play a role
in the first-order corergence analysisThe intgration proceeds to compute approximations of
the statex, = x"(t,) at the discrete time pointst, } L\'zo according to

S
Xe1 = F (Xi, U) = Ry + A_Zl biKi ; Xo=¢ (2.8a)
I:
with
i-1
Ki=h(x +A %aij Kj ) Uk,i) (2.8b)
J:
Uk = u(t +ca) (2.8c)

wheres is the number of stages in the RK methdd; ty.q —t, = 1/N (we assume a uniform
mesh in this Chapter for simplicity) aed= (c4,...,cs) andb = (b4, ...,bs) are parameters from
the Butcher arrayEquation (2.8c) is a simplification of Wwowe later definely ; to take care of
the possibility thau([) is dscontinuous at, + c;A. The quantitiesi, ;[T R™ are calledcontrol
samplesand relate to functionslll Uy through a map/, n which depends on the Butcher array
A and the discretizationVel N. This map defines othe RK method intgrates @er controls

in Uy.

From (2.8b), we see that the RK igtation depends on the control samplesty; for
k=0,...N-1,i=1,...s Wenusttale ome care if control samples occur at identical sam-
pling times, it we will ignore this possibility for ma The control samples areganized as
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follows:

Ui = (Ui, - U)X RT (2.9a)

0 = (Ug,... 0y |>\1< >S< R™. (2.9b)

In other words, the collection of control samples used by the RK method is denoted/tuigh
hasN componentsty, each of which contains the control samples used by the RK metod o
one step.When we us@ in algebraic gpressions, we will be treating it as tme< Ns matrix

U=[Ugq---Ugs "+ UN-1,1"""UNn-15]- (2.9¢)

If m=1thendis just a rav vector (not a columnector). Thespace of control samples is
Cv=(XXR™, (O, . 10, ) (2.90)

We will specify innerproduct and norm ohy in a moment.To indicate its dependence anwe
will write the solution to (2.8a) as.

The net step is to choose finite dimensional subspages] L, 5[0, 1]. These subspaces
can be defined in mgirways. InSection 4 we define twrepresentations faty, one based on
piecavise polynomials and the other based on piese constantsWe define a third representa-
tion based on splines in Section Given adefinition for Ly, we relate functionsl] Ly to their
control samplesiL] Ly via the bijectre map

VA,N . LN — [N. (29d)

Essentially this map is defined in the folleng way: for eachull Ly, G = V4 y(U) is gven by

Ugi = u(ty +¢). Thisis some&vhat diferent when dealing with splinesiowever, in the sequel
we will account for the possibilities mentioned ebdhat (i) u()is dscontinuous angii) some
of the control sample occur at the same sampling times.

Now we can define the approximating problems:

Pn ug]nSN fn ()

f(u) = é‘()—(,:l/A,N(U)) (2.10)

whereUy O Ly N U. The reason we do not writéy = Ly N U is because we might a
add additional constraint diy, depending on he Ly is defined, in order to pve cnsistenyg.
In order to compute solutions Bf; using a computer we will actually seha mathematical pro-
gram irvolving the control sample&T] L. In order for an optimization programonking in the
spacel y to be equialent to an optimization programanking in the function spadey, we reed
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to define the inneproduct and norm onLy so that, withu,viIU Ly and u=V,§’1N(U),

v =V,
(0,9)c, = (u,v), and [alc, = Julk - (2.11)

Equation (2.11) is enough to defifgl);  and||C;; we gve specific formulas in Section 4 and
Section 7.With the metric defined in thisay, V5 y becomes an isometric isomorphism between
Ly andLy. Hence, operations in one of the space arevelguit to the same operations in the
other Besides establishing this correspondence of operations, the definition of the méitgic on
is important from a purely computational point ofwibecause it can pvent ill-conditioning in
the mathematical program used to soRy. It is important to note that the metric dry
depends only on the basis 1of, not on the optimal control problem to be sdv

The final step in the construction of the approximating problems is to define their optimality
functions. llowing the form of the optimality functioa(l) for P we choose

on(u) = =0 fN (W - (2.12a)

The computation of] fy(u) is non-standard because the gradient is definedvelttithe space
Ly which we define We will show that, foru L,

Od . [
Ofy(u) = % fN(vA,N(u)EM‘N1 (2.12b)

whered fy () / dUis the standard discrete-time detive d fy (0), which can be computed using
formulas similar to those for Eulerimethod, andM  is a positve-definite matrix that depends
only on the definition ot . This formula is slightly dierent for splines.

2.3 DEFINITION OF OPTIMAL CONTROL PROBLEM

We will consider optimal control problems with dynamics described by ordinderetiftial
equations of the form:

X(t) = h(x(t),u(t)) , a.e.fortm [0, 1], x(0)= &, (3.1)
wherex(t) R", u(t)@ R™, and henceh: R" x R™ - R". Non-autonomous dynamics can be
handled by defining time as axte state ariable witht = 1,t(0) = 0.

To establish continuity and dérentiability of solutions of (3.1) with respect to controls,
one must assume that the controls are bounddd)ji®, 1]. However, the finite dimensional
approximating control subspaces that we will introduce must be treated as Hilbert Sf@ses.
can cause complications in establishing the required approximation properties of the optimality
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functions for the approximating problems that we will constriictarcumvent this dificulty, we
will, as in[43] assume that the controls are elements of the pre-Hilbert space

Lon;,Z[Ov 1] i( Lon;[01 1] ’ <D[ﬂ2 ) I E"Z )1 (323)

which consists of the elements I0f[0, 1], but is endaved with theL5'[0, 1] inner product and
norm. NotethatLg) 5[0, 1]is dense irL3'[0, 1].

We will define our optimal control problems on the pre-Hilbert space
Heo2 = R™ % L3 5[0, 1] = (IR™ x Lg[0, 1] , (L0 , 10 ), (3.2b)

whose elementsg consist of pairs of initial states and contrale, 7 = (£,u). NotethatH, , is
a dense subspace of the Hilbert space

H, = R" x LJ[0, 1] . (3.2¢)

The inner productLiQy and norm|[ly, on Hy, and hence also oH, ,, are defined as folles.
Forany 7 = (¢,u)[ H, andz' = (&', u’) Hy,

(mn'lq = (£, &) + (u,u')y, (3.2d)
where (¢, £’) denotes the Euclidean inner product, andLthéner product{u, u' ), is defined by

(u,u), ij’l (u(t),u'(t)) dt. Consequentlyfor ary n = (&, u)d H,,
0

Wl = (7.7 = IEIP + B - (3.2€)

Next, we introduce a compact, om@X ontrol constraint set
U OB, pma) = { U R™ | JUll € pmax}, Where pnax is assumed to be didgiently lage to
ensure that all the controlg)) which we epect to deal with tak values in the interior of
B(0, pmax).- We then define the set of admissible controls by

U={uLy,[0,1]|ut)DU, ae.for t[0, 1]} (3.3a)
and the set of admissible initial state-control pairs by
HZR"xU OHy,. (3.3b)
The seH is contained in the lger set
B=R" x { Ul Lg [0, 1] | u(t) B(0, pmay) » @€.0n[0,1]} O He, o (3.3¢)

inside which all of our results concerningfditntial equations arealid. Finally, solutions of
(3.1) corresponding to a particulg] B will be denoted by”(Dl

We will consider the follaving canonical constrained minimax optimal control problem:
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cP ﬂ%g {wo(m) |we(n) <0}, (3.4a)

where the objecte function,y,: B - R, and the state endpoint constraint functipp; B - R
are defined by

wo(n) :V%%ff (n) u/c(n)zvmmq?}qof (n) , (3.4b)

where thev-th functionf": H - R is defined by

f7(m) = ¢(5, x"(1)) , (3.4¢)

with ¢V R"xR" - R,andg, = {1,2,...,00}, 9c = {1,2,...,9c.} (with g, andq, positive
integers). The set g.+Qqo={1 +0o,..-,0c *do}- In what follovs, we will let
g={1,2,...,q} with g =g, +0q.. By defining the feasible sét = { n[Il H |y.(7) <0}, we
can writeCP in the eqwaent form of problenP in (2.1a).

Various optimal control problems, such as non-autonomougyraiteost, and free-time
problems, can be transcribed into this canonical foliso, the endpoint constraint in (3.4a) can
be discarded by setting.(7) = —oo0, and control unconstrained problems can be included by

choosingpmax andU sufficiently lamge to ensure that the solutiod§)l of CP take values in the
interior ofU.

Properties of the Defining Functions. We will require the follaving assumptions:
Assumption 3.1.

(@) The functionh(GI) in (3.1) is continuously diérentiable, and therexists a Lipschitz con-
stantx < oo such that for allx’, x” [ IR", and v',Vv" [ B(0, pmay) the follonving relations
hold:

IRCX, V) = (X", vl < &fIIX = X" | + v = v, (3.5a)
P (X7, V') = (X", vl < & [[IX = X" + v = vl (3.5b)
Ia (X', V) = Ay (X", vl < & [lIX = X[+ v = vl , (3.5¢)

(b) The functionss™ (LD} &7 (G and ¢y (KDL with v[TI g, are Lipschitz continuous on bounded
sets. O
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The following results can be found [i58]
Theorem 3.2. If Assumption 3.1 is satisfied then
(i) there aists ank < oo such that for all', " [ B and for allt[T] [0, 1]
X7 (®) = X" O < xlbr’ = 7" ;
(i) there @ists aL < oo such that for alhI] B and allt(1] [0, 1]

X7l < L+ 15D

(i) the functionsy,:B - R andy.:B - R ae Lipschitz continuous on bounded sets;

(iv) the functionsf” (0, v[I1 q, havecontinuous Gieaux diferentialsDf": B x H, , — R that
have the formDf " (57 ; 6n) = (Of"(n),67) u;

(v) the gradient&f":B - He, 2, Of¥(n) = (Og £7(n), Ou " (m), VD g, are given by
Og £¥(n) = D:87(6, x7(1)) + p""(0) (3.6a)
Ou fY()(t) = hy(x(), u(t)" p""(t) , ¥ €T[0, 1], (3.6b)

where p”"(t)IJ R" is the solution to the adjoint equation

pv =- hX(Xﬂv u)T pv 1 pv(l) = ngv(é:v Xﬂ(l)) ’ tDD [01 1] 1 (360)
and are Lipschitz continuous on bounded sek in O
An Optimality Function .  Referring td59] the followving result holds because of Theorem 3.2:

Theorem 3.3 For any 710 B, let

we(m)+ =max{0,yc(n)} , (3.79)

and for ay ,7" 0B ando > 0, let
W(n,n') = max{wo(n) — wo(n') = owe(')+ ,we(m) —we(n')+}. (3.7b)
If Assumption 3.1 is satisfied a’n\yd]]] H is a local minimizer of the proble@P, then
DW (. 7:n-7)=0, VlH, (3.8)

whereD,W indicates the directional deative d W([J)lwith respect to its secondgarment. 0O

Next we define an optimality functiom: B — IR for CP. For ary ,7' 0 B andv[l g, we
define a first-order quadratic approximatiornftdl) at » by

P Gnm) = () + (OF @) = b + 21 -l (3.92)

We define the optimality function, with the samesfil > 0 used in (3.7b), by
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6(n) = ﬂmﬂji]g maxévfyﬂf Y1) = wol) - ool X ) - weln)s é' (3.9b)
The «istence of the minimum in (3.9b) folks from the cowvexity of the constraint sétl and of
the max functions in (3.9b) with respectrto and the &ct thatP"(n, ') - oo as || - oo[60,
Corollary 111.20 (p. 46)]. Note that if f"(7) = —oo for all v[I] q; + o, SO thaty,(7) = — oo, then
(3.9b) reduces to

" . 1 1 r_ _
0(7) = min max f,(n) + (OF"(m).n" = n)n + 3 I 1l = wo(n) - (3.9¢)

Referring once agn to[58] we find the folleving result:
Theorem 3.5. Let#:B - R be defined by (3.9b).If Assumption 3.1 holds theri) a(0lis
negdive valued and continuou§j) the relation (3.8) holds if and onlyé(’;y) = 0. O

2.4 APPROXIMATING PROBLEMS

The construction of aamily of approximating problems for our problé€®®, in (3.4a), sat-
isfying the axioms of the theory of consistent approximation requires the construction of nested
families of finite-dimensional subspaces of the initial state-control spiagg, approximating
cost functions, and approximating constraint sefar selection of these approximations is
largely determined by our intention to usepkcit, fixed step-size Rungetitta (RK)
methods [61,62]for integrating the dynamic equations (3.1Yhroughout this chaptemwe
assume, without loss of generalitiyat the intgration proceeds with a uniform step-sixie will
relax this assumption in Chapter 4.

2.4.1 Finite Dimensional Initial-State-Contr ol Subspaces

We tegn by defining &amilies of finite dimensional subspaceddy, with
Hn = R" x Ly O He, 2, where thely are finite-dimensional subspaceslqf 5[0, 1], spanned
by piecavise-continuous functions to which RK methods can kteneled. Hencegiven an
explicit, fixed step-size RK inggation method, using step-size= 1/N, we impose the follwing
conditions on the subspaceg:

0] For any bounded subséeb of B, there &ists ax < oo such that for ann[I0 S n Hy, the
RK method results in an irgeation error no greater than'N in solving the diferential equation
(3.1).

(i) The data used by the RK igmtion method is an initial state and a set of control
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sample; We will require that each set of control samples corresponds to a unique element
ull Ly.

Condition (i) will be needed to pre that our approximating problems epigerge to the
original problem. For the subspaceky that we will present, we will actually be able to y&o
more than first order accusacCondition (i) facilitates the definition of the approximating prob-
lems and mads it possible to define gradients for the approximating cost and constraint func-
tions.

We will now show how the choice of an RK intgation method &bcts the selection of the
subspaced. . The generic, xplicit fixed step-sizes-stage RK method computes an approxi-
mate solution to a diérential equation of the form

x(t) = A(t, x(t), x(0)= &, t[0,1]. (4.1a)

WhereH R xR" - R"is continuous irt and Lipschitz continuous ir. It does so by solving
the diference equation

s
Xk+1:Xk+AzbiKk,i , Xo=x(0)= ¢, kEﬂ]f)\[ﬁ{O,l,...,N—l} ) (4.1b)
i=1

with A = 1/N, t = kA, and K ; defined by the recursion
0 _ 0 _ i1 .
Kk1=h(z1, Xe) » Kij = h(zg, X¢ + AZlf':li,ij,j) ,1=2,...8, (4.1c)
J:

where, for comenience, we hae defined
T, =te+tcgA, A=1/N. (4.1d)

The \ariable X, is the computed estimate gft,). Thetime points{ t, } L\'zo define theintegra-
tion meshaso referred to as thdiscretization mesh These time points will also be referred to as
breakpointdn the contgt of piecavise control representations.

The parameters, j, ¢; andb;, in (4.1b) and (4.1c) determine the RK methddese param-
eters are collected in tHButcher array A = [c, A, b']. The Butcher array is often displayed in
the form:

T The term control samples will be clarified shartly
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Cq 0
C | a1 0

Cs as,l as,s—l 0
‘ bl e bs—l bs

The folloving assumption on thke parameters will hold throughout this chapter (conditions on
the c parameters will be added later):

Assumption 4.1. Foradl ils by >0and¥ ., b, = 1. m

Remark 4.2. The condition} ., b; = 1 is satisfied by all covergent RK methods Other con-
ditions must be satisfied to achéetigher order covergence for multi-stage RK methods. O

Now, in our case,H(t, X) = h(x,u(t)) and the elements(t) of the subspaceky will be
allowed to be discontinuous from the left at certain pre-specified pd’rhatace,H(Dx) is dscon-
tinuous and special care must bectako ensure accurate igtation. Fer this purpose, thealues
u(zy ;) must sometimes be replaced by left limits as appropriate for the particular choice of the
subspacé_y. We will refer to these alues asontol samplesand denote them hy[ 7y ;] where,
if necessaryu[zy ;] = ”mmk,i u(t). Thespecific definition oli[z, ;] depends on the definition of
Ly, but clearly ifu(QJis continuous aty ; thenu[zy ;] = u(zy;).

The recursion (4.1c)veluatesH(Dm s times for each time-steki ] A, If we ollect the

corresponding control samples into a matria, = (u[zy 1] - - -U[ 7« s]), we can replace equations
(4.1b) and (4.1c) with

Xis1 = Xy + Agl biKki, Xo=x(0)=¢, kDA, (4.3a)
whereKy; = K;(Xk, @) which is defined by the recursion
Ki(x,w) = h(x,m1) , Kj(X,®)=h(x +Ai§1ai,jKj(x,w) @), 1=2,...8, (4.3b)
i=
wherew; is thei-th column ofw. Equations (4.3a,b) can be written eglently as
Ries = Xic + Aé bih(Yigi, @), %o = x(0)= £, KA, (4.30)

where, for eackk,
i
Yk,l: Xk Yk,i = Xk+A.Zlaiyjh(Yk'j,a)j) . (43d)
J:

The quantitiey; are intermediate estimatesxffy ;).
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We will define the control subspads,, in such a vay that there is a one-to-one correspon-
dence between elemeniSl] Ly and the samples afft, + ¢;A] used by the RK method with
step-sizeA = 1/N. The definition ofL is som&hat complicated by thaét that some of the
elements of the Butcher array maywéahe same alue. Thiscauses the RK method to use sam-
ples at times, + ¢;A more than once and hence leads to a reduction of the dimension in the asso-
ciated subspacky. To keep track of the distinctalues of thec; elements of the Butcher array
we define the ordered set of indices

| ={ig,ip....i;} ={ils|c; #¢,V j[Ms, j<i}, (4.4a)
and let
|J:{IDDS|C|=C|],IJDD|}, jmr . (44b)

Thus, the total number of distincalues takn by the elements in the Butcher array is. For
example, ifc = {0,1/2,1/2,1} (as in the most commonly used fourth order RK method), then
r=3,1={i1=1,i,=2,i3=4}, I1= {1}, I,={2,3}, and I3 = {4}. If eachg; is dis-
tinct, thenr = s,i; = j, and | is the singleton{ j}. Otherwiser <sandi; = j for eachjIr.

By construction of the sdt, ther distinct sampling times in the intedvty, ty.1], KOO A
are gven by Tk jidr, i;01. Corresponding to each sampling time there is a control sample

u[zy,; J00 R™. The collection of these control samples can beeitas a gctor ul ?\f)r( R™,
where the symboIl’\f indicates the Cartesian product Nf spaces. W will partition vectors

aD ?\I<>r< R™into N blocks, as follas:

u= (Do, ug,... :uN—l) , (45a)

where each block, [T >r< R™, kI 4 is of the form

Uy = (Gk,l1 s 1uk,r) ’ (45b)

with 0y ;[0 R™, ji r, corresponding to the samplefry ], i |, used by the RK infgration
during thek-th time interal. Ouralgebraic gpressions are simplified if we tre@atas them x Nr

matrix [00,1' : 'uo’r e 'GN—l,l' . 'DN—l,rL i.e., we will |dent|fy ?\l( >I’< R™ with the Spacelex Nr of

mx Nr matrices. Similarly in dgebraic &pressions, will treat 0, as the mxr matrix
[Ok1---0Ok,]. Thestandard inner product @Nﬁ>r< R™ is thel, Euclidean inner product\gn by

N-1 r
(U,v), = l(Uk,jaVk,j) : (4.5¢)

N=0 j=

Let G be ther x s matrix defined by
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il ] 0
O 1 O
G=[ 2 0 (4.5d)
ad T ad
O 1, O
where, for eachH[r, 11T =(1,1,...,1)s a rav vector of dimensionl]| (|IJ-| is the number of

elements inlj). Thenwe can associate the components k(I 4A; of a vector Gl ?\f)r( R™,
with the matriceso, used by the RK method (4.3a,b) by setiig= UG = [Uy 1 - Uy ,(]G.

We row present tw control representations that define subspat:hsD Lo 2[0, 11,
i = 1,2, NN, of dimensionNrm, such thatO_, Ly andO_; L% are dense i} 5[0, 1].
Both representations reduce to simple square pulses for Emstiod ¢ = 1). Thebasis func-
tions {e®) ;} (Ll =1, | = 1,2, with g the l-th unit \ector in R and ® 2 [0,1] -~ R™,
that we use to construct the spatksare not orthonormalHence, for numerical calculations,
we associate with these spadésn-dimensional spaces of real ciigents of the form

Cn = (XX R™, (00, 10, ), 1= 1,2, NOON, (4.5€)

where the inner products and norms are chosen so that fpr uavill Ly, with
u(t) = T ey Uy Py andv(t) = S0 ) v j Py (), (D [0, 1],

(Uvl=(0,v)a , b= "l]”[iN, (4.5f)

N
wheredT] L<>r< IR™ is defined in (4.5b,c)The spacei[iN will be needed to define gradients for

the cost and constraint functions of the approximating problems as well as in setting up numerical
implementations of optimal control algorithmBigure 4.1, which follws the definitions of_iN
belaw, illustrates the relationship between tlagious control spaces.

The reason that we choose lannorm preserving, nonstandard inner produthnis that
if we use the standaitd inner product and norm dEIiN (as is commonly done), we might, unwit-
tingly, cause serious deterioration in the performance of numerical algorithms whiehtsmlv
approximating problems in the cfiefent spacesliiN. The tent of this ill-conditioning déct is
illustrated in Section 6.0f course, if our basis facy had been orthonormal, then standbrd
inner product wuld be the appropriate choic&he purpose of defining ddrent control repre-
sentations is first, that the solutions of the approximating problewesdiéerent properties for
the diferent representations (this is discussed at the end of this section) and, second, some results
for the second representation are used toigeoresults for the first representation (Conjecture
5.11 and formula (7.19b)).
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Representation R1
(Piecaviser-th order polynomials)

Assumption 4.3. Foral iltlD s, ¢ [0, 1]. O

For eachkID A define the sub—intea!sT,} =[tk, tk+1) and define pulse functions

Then, define the finite dimensional control subsﬂd@as follows:
= {u LY0, 1] Ju(t) = kzo le | PRk, O R™ VEO[, 1]},  (4.6b)
where
DR (1) = O M k(t) KD A, (4.6¢)
with ¢y j(t) the j-th Lagrange polynomial for the poin{s;k,ij } Ezl, i;I0 I, defined by
¢Nk,(t)-||jlm, KD, Dt o)
1#]

with the property thapy i j(7v) = 1if | = j andgy i j(z«;,) = O if | # j. By construction of the
setl, ij,i;IJ 1 implies thatrkjj # 7, if | # J. Hence, the functiongy  ; (0] are well-defined,
and the functiongbl,\,’k,j (Y are linearly independentThe functiongy i j(t) is thus the unique-th

order polynomial that interpolateq Tk,ijvuk,j)} rjzl on the interal [ty,t,1]. The control sam-

ples forL are gven by

i if 7,0 TE

. _ KD A D (4.6¢)
0 Ilmt”k,i U(t) if Tk = k1

Proposition 4.4. Let L} be defined as in (4.6b) and define the map
Vain:Ly - ><><|Rm
ul- {{ ulei]} fe1d ko 100, (4.6f)
with u[[lgiven by (4.6e). SupposAssumption 4.3 hoIdsThenV}\ N IS invertible.

Proof  Let u(t) = j_O Zk -1 ukJCDN kj(t) be a0 abitrary element ofL},. Assumption 4.3
implies thatrk,ijD]] TE. Nex, it follows from (4.6e), thau[rk,ij] = Zj:1 uk,j¢N,k,j(Tk,ij) = U,

because of the interpolation property of Lagrange ponnomIMceV&,N is invertible. O
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The polynomial pulse function§ ®y ;(1)} iL5 = are linearly independentubthey are

neither orthogonal nor normal with respect to theinner product and normTo complete the
definition of the spaceElN in (4.5e), we will nav define the required inner product, which, in
turn, defines the normEirst, letuld LY, and note that we can write eactth order polynomial
piecezrj:1 Uk jon .k j(t) in (4.6b) as a poer seriesy P(t - ty), wherea, is anmxr matrix of
coeficients and the functio” : R - R' is defined by

Pt) =[1 t/A---(t/A)2]T . (4.7)

If uzv,in(u), then from Proposition 4.4,Uk,j=akP(cijA), jtr, i;0O1. Hence,

l:lk = [Uk,l e 'Uk,l’ ] = akT_l where

01l 1 - 1q
1. 0 DCil G, Gi, O
T -g:(cilA) P(ci,8) -+ P(c;, ) 5= 0 O . (4.8)
0 :
EC[;l Cirz_l Cirr_qul’

The matrixT ! is a \andermonde matrix and tlne/aluescij, ijDD |, are distinct. Therefore T™*

is non-singular and, = U, T. Hence, for eackIJ A; u(t) = u, TP(t — ty) for ti [ty, tys1)-
We row define the inner product betweenotwectorsa, vl [ﬁl, with u = (V}\’N)‘l(u) and
v = (VAn) (V). by

N-1
[ = (uv), = kZOJ'OA(u(tk +1), v(ty +1t))dt

N-1 A
ZI (G, T P(t), v, T P(t)) dt
k=040

N-1 1 A
=AY tracdo, T = I Pt) P(t)Tdt TTv}) ,
k=0 Al

N-1
=AY tracdO M, V), (4.9a)
k=0

whereT was defined by (4.8)P()was defined in (4.7), and

My =T % IA P(t) P(t)TdtBTT =T Hilb(r) T |, (4.9b)
i Jo 0

is anr xr symmetric, positie cefinite matrix with
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gl 12 13 g
mre 13 14 - Ur+1)0

Hilo(r) = 51/3 14  1/5 B (4.9¢)
O " 0
i (@ +1) U@ -1)0,,

the Hilbert matrix whosa, j-th entry is 1A+ j —1). Notethat both Hilbf) and T are ill-
conditioned matricesHowever, the product in (4.9b) is well-conditioned (the product corre-
sponds to switching from the wer-series polynomial representation back to the Lagrargpane
sion). Thematrix M, is positve definite because Hilb] is positive definite andT is non-

singular Given 0 E,l\,, its norm iS|'1]||2[h = (U,G)[h . Finally, if we define theN-block diago-
nal matrix

My =diag[AgM1, A My, ... .An-1 M T, (4.9d)
with A, =t,41 —t, = 1/N (in this chapter), then we carpgess the inner productvgn by (4.9a)

more succinctly as

(0,V)2 = (UM, V), = trace(M V") (4.9¢)

1
N
We haveintroduced the notation &, here in anticipation of using non-uniform meshes in later
chapters.

Remark 4.5. A special class of functions within representatigf is the subspace af-th
order m dimensional spling$3]. Thedimension of the spline subspace is only a fraction of the
dimension ofL}. Our results forR1 can be etended to splines; thisceension is presented Sec-
tion 7. O

Representation R2
(Piecavise constant functions)

For jI0r, I; defined in (4.4b), let

b, = 2 b (4.10a)

j
d,-:'Ain, do =0. (4.10b)
i=1

If all the ¢; elements of the Butcher arrayveadstinct values therd; = Azijzl b;. At this point,
we can replace Assumption 4.1 with the faliog wealer assumption:

Assumption 4.1’ Fordl jidr, EJ- > 0andd, = A. O
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Note that Assumption 4.1’ implies that for glilir, d; > dj—;, and thatty + d;I0 [ty, tye],
K A
Next, we introduce one additional assumption which is stronger than Assumption 4.3 used

for representatioR1.

Assumption 4.6. For jlIlr andi;[ I, dj_; < cijA <dj, s thatrk,ijDD [ty +dj_1, tc + dj]. O

Now, for eachkl] A’ and j(II r, define the sub-inteals Tlf‘j =[tx + dj-1,t +d;j) and let the
basis functionsb?, kj:R - R be defined by

1 if o0 T§

4.11a
D 0 elsavhere . ( )

Nkj(t) =

Then, define the finite dimensional control subqu?g:eas follows:
2 m N-1 r B m
Ly = {uD L0, 1] | u(t) = kz 2 Uy dJNkJ(t), U, ;[0 R™, ¥ t11[0,1]} . (4.11b)
: J_
The control samples fdr2, are gven by
u(zy,i;) if 7y, 0 T

1k|:|]:| ,D]]I,D]:l . .
qlim,, ., ) i ng, = e+, AL JDr . (4110)

u[7"k| ] =

Proposition 4.7. Let L% be defined as in (4.11b) and define the map
VAn:ILY - ><><|Rm
ul- {{ U[Tkl ]} i= 1} k—O ) .j I, (4.11d)
with u[{given by (4.11c). SupposAssumptions 4.1’ and 4.6 hoId’.henV}\’N is invertible.

Proof ~ Assumption 4.1’ ensures that the support for eaﬁtk,j([ﬂ is d nonzero length.This
ensures a one-to-one correspondence between the eIemEﬁtamﬂ the ector coeficients, j,
in (4.11b). Next, Assumption 4.6 together with definition (4.11c) Wf]l implies that for awn
U LY, with u(t) = 3o 3oy Ok PRk (), Ulzij] = Uy for all KOO Afand jr. Hence,
V32 \ is invertible. O
To complete the definition, in (4.5e), of the spaEé,svve will now define the required inner
product and norm.We define the inner product between otwectors G, vilTJ [ﬁ, with
u = (VAn) (@) andv = (V ) (9, by
N-1 g
(D,V)EzN = (U,V), = g EI (u(ty +1),v(t, +1))dt

-28- Chap. 2



N-1 r Bl
ZAZ Z j(Ukyj,Vk’j)dt
k=0 j=1

N-1
=AY tracdd My V) , (4.12a)
k=0

where,

M, Ol (4.12b)

Since aIIEj >0, M, is diagonal, posiie cefinite. Gven ] [ﬁ, its norm is||1]||2E2 = (0, U>Eﬁ :
N
Finally, if we define theN-block diagonal matrix
MN idiag[AoMz,Ale,. .. !AN-IMZ] , (412C)

with A, =t,1 —tx = 1/ N (in this chapter), then we canxpgess the inner productvgn by
(4.12a) more succinctly as

(0V)z = (UM, V), = trace(M V') . (4.12d)

Remark 4.8. In place of (4.10b), we could ¥& wsed the alternate definiticoh iAZijzl b,

and sety ; = u[zy ;] for all jlII s, KOO A In this way, samples corresponding to repeatedires

of ¢; in the Butcher array auld be treated as independealues and the spatg, would have

be correspondingly eniged. Havever, Proposition 6.2 in Section 6 indicates that (4.10b) is the
preferable definition. O

The relationship between the spatgs,[0, 1], Ly andLy and the relationship between a func-

tion ullJ LY and its control samplas= Va n(u) are illustrated in Figure 4.1.
2.4.2 Definition of Appr oximating Pr oblems
For N[ N, let
Hy =R" x Ly, (4.13a)

whereLy = L3 for representatioiR1 or Ly = L,Z\, for representatioi2. Since Hy U H,, 5, it
inherits the inner product fromd, , which, forz', " O Hy, with " = (£, u’) and " = (¢",u"),
is given by

(n',n" )y =(&,&") + (u,u"),. (4.13b)

Also, for ary 710 Hy, |77||2H = (n,n)y. Smilarly, for NOO N, we define the coditient spaces
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i K.l —

] a |

; — = — uOLg
— i Tk2  Tks

k-1 I lk+1

Fig. 4.1: The diagrams abe cepict the relationship between tharieus control space<On top, the map
Va N, Which is a bijection, identifies control functions in the finite dimensional spagegth their control
samples in the cofifient spaceslLy. The spaced  are subsets of the infinite dimensional spaces
Le2[0, 1]. The two bottom plots she a portion of a single controlud Ly for an RK method with
c=(0,3.3)andb=(},%,1). Sincer = 3 there are three control samples per irgbnThemiddle plot
shavs ulll L}; u is composed of third order polynomial piecéEhe bottom plot shes ull L%; u is
piecavise constant.For the k-th intenal the samples are @k at times, ; = t, +C;4A, j = 1,2, 3,where

A = 1/N is the step-sizeNotice that the samples gt; andz, 3 occur at points of discontinuities u{[}.

The definition of the control samplas,; = u[z, ;], ensures that the samples on khth intenal are takn
from thek-th polynomial piece foull L}, and for ull L%, the k, j-th sample is taén from thek, j-th

piece. Note that this pictureowld look eactly the same for a four stage RK methods with (0, 2, % 1)

andb = (3, 3,3, ¢) since, in this case, there is a repeated sampling tigve ¢, andEz = 3).
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Hy=R"x Ly, (4.14a)
whereLy = Ly or Ly = L%. The inner product oy is defined by

(77" g, = (&,8") + (U, u"); (4.14b)

N L
and the norm correspondinglietWp  : Hy - Hy be defined byVy () = (é’,V&YN(U)) for repre-
sentationR1 and W n(77) = (§,V,§‘N(u)) for representatioiR2, wheren = (£,u). Then we see that

W, \ is a nonsingular map and, with our definition of the normdd@n provides an isometric isomor

phism betweetd y andHy. Thus, we can use the spat¢dég andH interchangeably

Next, we define control constraint sets for the approximating problems, as<ollcetU
be the comex, compact set used to defibkin (3.3a). Then, withxy < oo, we define

Uy = {0 Ly | OV, jmr, (0Tl < 2,...r VKDOA} (4.153)

A .
(G-nr-1*!~

U% = {0 L} |0 MU Vo, KOAG, (4.15b)

whereT; is the j-th column of the matrix, defined by its imerse in (4.8), and\ = 1/N, as
before. Finallywe define the constraint sets for the approximating problems by

Hy =R" x Vi (Uy) O Hy , (4.15c)
and their reflections in cdéfient space:
Hy =R"x Uy OHy, (4.15d)

with Uy = Uy, andVa n = VA \ for representatioR1 andUy = 0% andVa n = V3 \ for repre-
sentatiorR2. We assume thap,,ax Was chosen lage enough in (3.3c) to ensure thihj U B.

Remark 4.9. The constraints ofuT;|l,, appearing in the definition &%, were introduced to
ensure that each polynomial pie@rj,:l Uk,qulN’k,j(D], ofu= V,;}N(U) is Lipschitz continuous on

[tk tke1] With Lipschitz constanky, independent oN. That is, |Un(71) — un(z2)] < &y for all

71, o0 [ty, tkeq], KOO A This piecavise Lipschitz constant is needed to establish that the accu-
ragy of the RK intgration increases at least linearly with decreasing step-size (Lemma A.1 and
Lemma 4.1Q), but see Remark A.2)The need for this pieegse Lipschitz continuity is demon-
strated in Remark 4.13n the nat section we will sha that the control samples of solutions to

the approximating problems we define do not depend on the control representation (Proposition
5.5). Becausef this, we will conjecture (Conjecture 5.11) that the pigse Lipschitz continu-

ity constraints in the definition cﬂilN can be dispensed with if the assumptions required for the
approximating problems defined with control representa®@nwhich are strong assumptions
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than those required for representatitl) are met. a

Next, with 7 = (£,u)d Hy and 77 = (£,U) = Wa n(7), we will denote the solutions of
(4.3a,b), withw, = 0, G, kI A by { X} Ko or, equivalently, { X!} k. The \ariablex] is thus
the computed estimate of(t,). Finally, for vl g, let f{:Hy — R and fy:Hy - R be
defined by

) =¢'(& X)) = @ =¢"(Exq), vDq, (4.16)

where¢” (L)) was used to definé”(Dlin (3.4c). W& can nav state the approximating problems
as:

CPn Jon {von(m) [ven(n) <0}, (4.17a)

wherey, \(7) = %%X f () and we N () = a—i)-(q fx (1), or equvalently, in the form in which

m
v gc+do
they must be soled numerically:

CPy ﬁ%iFr"N {won@) | W n(7) <0}, (4.17b)

where %,N(ﬁ)iv%%x fu(7) and 1/7(31,\,(77)iVDquazfq0 fx(7). By defining the feasible set

Fn = {7 HN |wen(m) <0}, we can write CPy in the equialent form of problemPy in
(2.1Db).

Note that for ap ul U n Li, i = 1,2,whereU was defined in (3.3a)d = Vj, \(u) satis-
fies G ;0 U, for kIO 4 jiOr, becauseu(t)I U for all ttIl [0, 1]. Hence, for representation
R2, (4.15b,c) imply thaH N Hy O Hy. Corwersely ol U <=> (V2 ) (@)D U, and there-
fore Hy UH N Hy. Consequentlyfor representatioiR2, Hy = H N Hy. Unfortunately for
representatiorR1 Hy #H N Hy. First, H N Hy DHy because elementsl] U N LlN do not
necessarily satisfy the Lipschitz continuity constraint imposed by (4.18eyond, ifr =2
(except for the case = 2 and the Butcher array elemernts= (0, 1)), Hy [IH N Hy because,
given 0] [1N, generally IVKN(G)L,O > |Ulls, [63, p. 24]. Hence, if { 7y = (ényUN) T NOONG
N O N, is a ®quence of approximate solutions to the probl@Rg using representatioR1, it
is possible for theuy to violate the control constraints @P. Howeve, as we will see, the limit
points of such a sequence do satisfy the control constrail@®.inThis problem of constraint
violations for representatidRl1 could hae keen &oided by choosingdy =H N Hy (as in[43])
and lettingH y =W, n(Hy), but the seH y would then be dffcult to characterize and weowld
have o impose a Lipschitz continuity constraint directly on thetsetvhich would be unaccept-
able.
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Nesting The theory of consistent approximations is stated in terms of nested subldpaces
This allovs the approximate solution of an approximating prob@?yg, to be used as a ‘avm-
start” for an algorithm solving an approximating probléRy, with a higher discretization vel
(N> > N,) (see [55,57).

For representatiomR1, for ary NCO N, N = 1, L 0L, and therefore doubling the dis-
cretization leel nests the subspaces$t ull Ly, thenv = V&’ZN(U) can be determined from
U= V,;l\,N(u) using (4.7) and (4.8), as folls. For ki Aland j(r, Vék =Uu, T P(c;/2N) and
Vékﬂ = U, T P((cj +1)/2N). For representatioR2, L2 O LﬁN whered is the smallest common
denominator of the parametdys I s, in the Butcher arrgywhich is finite assuming, as is typi-
cally the case, that thg, are rational. Thus, the discretization\el must be increased bydtors
of d to achiwe resting. Ifull] LY and d = V3 \(u), thenv = V3 g (u) is gven, for KD 4
i,jdr,andl=1,...d, by \7idk+| = Uy j for dj_; <1/d < dj, whered; is defined in (4.10D).

2.4.3 Epiconvergence

We ae nav ready to establish epicesrgence of the approximating problemBirst we present
convergence properties for the solutions computed by RungftaKnteyration onHy. The proof
of the follawving lemma, gien in the Appendix A, difers from standard Rungedifa results
because of the presence of (possibly discontinuous) controls inférewtifl equations.

Lemma 4.10. For representatiofRl, suppose that Assumptions &J, 4.1’ and 4.3 hold.For
representatioR2, suppose that Assumptions &J, 4.1’, and 4.6 hold.

(i) Corvemgence For any bounded subse$ B, there &ist ¥ < 0o and N * < oo, such that

forary 0 SN Hy andN = N *,

IX7(t) - >’<Z||s% , kU {0,1,...,N}. (4.18a)
(i)  Order of Cowmemgence Additionally, suppose the Rungetta method is ordep,
(see[61,62) and h([J))is p —1 times Lipschitz continuously dérentiable. Let

drt

L (uty) —uD)I< &' ¥ tg, to0 [ty, tewg) , KD AG (4.18b)

HY = {n= (& WD Hy ||

wherex' < oo is independent oN. Then for representatioR1, there &ist ¥ < co and N* < o0
]
such that, if eithepd] S N H(,\’,’), orif LI SN Hy andh(x, u) = h(x) + Bu, whereB is annxm

constant matrix, then for arN = N*,
IX7(t) - XU < % , kD {0,1,...,N}. (4.18¢)
0
Bound (4.18c) also holds for representafkihfor ary n[11 SN Hy if h(x,u)=h(x)+ Bu. 0O
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In proving consisteng we will need to add aersion of Slates wnstraint qualification on the
problemCP.

Assumption 4.11. For every n{IJ H such thaty(n) < 0, there gists a sequencgn; } 2, such
thatp; 0 H, w.(;) <0,and#n; - nasi - oo. O

Theorem 4.12 (Epiconergence). For representatiofiRl, suppose that Assumptions 3.1, 4.1’,
4.3 and 4.11 hold and leit= 2. For representatioR2, suppose that Assumptions 3.1, 4.1, 4.6
and 4.11 hold and led be the least common denominator for the eIembp,tstD s, of the
Butcher array LetN = { d' } 2. Then, the problem¢ CPy } o corverge epigraphically to
the problenCP asN - oo.

Proof Let SUB be bounded.Then, by Assumption 3(ft) and Lemma 4.1, there &ist
k', k¥ < oo such that for anv[l] g and for ay 0 SN Hy,

K

1F¥(n) = TR)1= 187 Ens XN D)) = Y (ENL XIS &7 IX™N (L) = Xl < N (419)
Now, letyv' [ q, be such that,(7y) = ¥ (7n) - Then,
Voln) = Von(m) = 17 () = won(m) < 1) = ) < 1 - (4.190)
By reversing the roles of,(77n) and y, y (7n) We can conclude that
Woln) = VoIS 1 - (4.20a)
Similarly,
() = ven(m)l < 1 - (4.200)

Now, gven nI0H such thaty.(n) <0, there gists, by Assumption 4.11, a sequence
S={#n}imn, With 70 H, such thatn; -~ n asi - oo (henceS is a bounded set), and
wc(171) <0 for alli. Now, clearly for each, there aists N;(Il N and »'y,[IJ Hy, such that(a)

kI Nj < =1/2p(n;), (b) lmn," — mill< 1/N;, since, for both control representations, the union of
the subspacesHy is dense in H, which contains Hy,, and H N HyUOHy, (c)
we(nn,') < 12pc(n;) due to Theorem 3(&i), and (d) N < Nj,;. It follows from (4.20b) that
Yo (IN') Swelnn') + xINj < U2p(n;) + x«/N; <0 for ary i, kO N. Now oonsider the
sequence&’ = { ny" } mmn defined as follas: if M = N; for someilll N, thenny" = 7y, for
M=N;,N+d,N;+2d,...,Ni;; —d. Then we see thawy,u(7u")<0 for all MIIN,
nv" - 7 as M - oo (hence S' is bounded), and by (4.20a) and Theorem(iid.2that
lImpm N wom(m™) = wo(n). Thus,part(a) of Definition 2.1 is satisfied.
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Now let S={#ny}Nnmk, KON, be a ®quence withzny = (&n,un)DOHy and
wen(n) <0 for all NOO K, and suppose thagy K 7= (& u). First,we want to shw that
7 H. For ary vi R™, let d(v,U) =min, gy V- V| Sncet = V}\’N(UN)DD UiN, i=1,2,
for each N, G ;MU for all kOIOA; jdr. For representation R1,
limy 0,18 k d(Un(t),U) = 0 snce elementspiy D U}, are piecwise Lipschitz continuous
polynomials, with Lipschitz constant independent f defined aer progressiely smaller
inter\aIsT. For representatioR2, d(uy(t),U) = 0 for all NCIO N andt[I] [0, 1] sinceuy [ U3 is
pieceavise constant.This implies thatu U; hencend] H. Furthermorew.(7) < 0 by (4.20b)
and the continuity of.(0. Finally, by (4.20a) and Theorem i), limym k won(7N) = wo()-
Thus, par{b) of Definition 2.1 holds. O

Remark 4.13. In[42], Hager empirically obsees that RK methods with; = 0 for somej,
such as the modified Euler method, cannot be used to discretize optimal control pratiiems.
requirement, formalized in Assumption 4.1, is used in our proof of eyaamnce. Hwever, for
RepresentatiofiR]l, epicorvergence ofPy to P can be establishedian if, for somej, Ej <0.

This is because of the Lipschitz continuity constraint imposed on theset(4.15a).

Nonetheless, ourxperimental @eidence suggests that using an RK method \Ei;h; Ois
unwise. fer example, the three stage, third order RK method with Butcher array

0
1|1
1107
5 5
L
6 9 18

was wsed to discretize the problem described in Section 6 at discretizat@nNe= 10. The
solutionsuy® for different \alues of Lipschitz constant, are plotted in Figure 4.2aor com-
parison, the solutions of the approximating problems produced with the third order RK method
with Butcher array

=Nk O
[N

wIN| N

are presented in Figure 4.2Bor both, withxy small, the quadratic polynomial pieces in each

1
6

ol

time intenal are forced to beafrly flat. But, asxy is increased, the solutions for thbad”

T It can also be shlan by contradiction thad(uy (DL U) — 0 ae. on[0, 1] without requiring, in (4.15a), elementslrbi, to have
a wiform pieceavise Lipschitz constant.
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method become increasinglyorge and the control solutions remain pushedresg the Lipschitz
continuity constraintsOn the other hand, the solutions for tlgw6d” method become better as
xy in increased.In fact, wherky, is bigger than the Lipschitz constant of the true soluifothe
Lipschitz continuity constraints are inaaifor the ‘good” method (see Remark 4.9 his is
seen in Figure 4.2b since the solutionssigr= 1 and x; = 10 are identical. As «, Is increased
from 0.1 to 10, the error max|uy'[zx ;] — U'(zk ;)| goes from 0.0332 to 7.9992e-4 for the
“good’ method and goes from 0.0332 to 1.9119 for thad” method.

The conditions imposed by Assumptions 4.3 and 4.6 orc tharameters of the Butcher

array are needed because of the discontinuities in the cauiffblsy;, i = 1, 2. O

2.4.4 Factorsin Selecting the Contr ol Representation

The choice of selectingy = LY versusLy = L% depends on the relaé importance of approx-
imation error ersus constraint satéftion. Itfollows from the proof of epicarergence, that irre-
spectve d which representation is used, {ifry } nmn 1S @ Sequence such thay [ Hy, and

nn — 1, theng H. Thus# satisfies the control constraintslowever, as mentioned earlierif
representatiolR1 is used, themy may not satisfy the control constraints foy dimite N (except

for the case = 2 andc = (0, 1)). Since a numerical solution must be obtained after a finite num-
ber of iterations, representati®2 should be used if absolute satigion of control constraints is
required.

If some violation of control constraints is permissible, then representRtlomay be
preferable to representatid®? (although, see comment about transformation of simple control
bounds in Section 6) because a tighter bound for the error of the approximate solution can be
established foR1 than forR2. To see this, letyy* = (£, un’), NCIO N, be a bcal minimizer of
the finite-dimensional probler@Py. This solution is computed by settingf =W/§,1N(77N*),
whereﬁN* is the result of a numerical algorithm implemented on a computer using the formulae
to be presented in the folling sections.The error |u* - uN* |b, of the approximate control solu-
tionsuy® can be determined as falls. Assumehatuy® — U asN — oo and thati is a local
minimizer of CP (if the uN* solutions are uniformly strict minimizers theh must be a local
minimizer by Theorem 2.2)Let ‘[ XX R™ be such that' j = U (zy;), for kIO AG jiOT

(assumingl (7, ;) exists). Thenwith ay" =V n(uy’),
I = un T < I = VAR @) + IVAN(E) = un' T = 0 = VAl + 1d - oy, 4.21)

By Proposition 5.5 in the mesection, the quantityd] — ty" c,, is not afected by the choice of
control representationg=or smooth, unconstrained problems discretized by symmetric RK meth-

ods, a bound fold] - ty'|l, can be found if67, Thm. 3.1] (see Proposition 6.2 in for an
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Fig. 4.2a: Effect of the Lipschitz constart;, on the solution of problem (6.3) discretized with an
RK method that satisfies the Assumptions of Theorem 4utthdsb, < 0. The solution gets
worse asq is increased.
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Fig. 4.2b: Effect of the Lipschitz constart, on the solution of problem (6.3) discretized with an
RK method that has ali; > 0. The solution gets better ag is increased until the point where
the Lipschitz continuity constraints auN* become inactie, as is the case forxy = 1 and
Ky = 10.
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improved bound for RK4). The quantitylfi — VX (0)l, is the error betweed" and the element
of L}, or L,Z\l that interpolate$1* (t)att=r7;, KO A and jlIr. The piecavise polynomials of
representatiolR1 are generally better interpolators fﬁ([)], except near non-smooth points, than
the functions oR2. For U' ([ sufficiently smooth,|f" - V3% (0], is of orderr for representa-
tion R1 (see [63]), but only first order for representati&®?®.

2.5 OPTIMALITY FUNCTIONS FOR THE APPROXIMATING PROBLEMS

In order to deelop optimality functions for our approximating problems, we must deter
mine the gradients of the cost and constraint functions for the approximating problems.
2.5.1 Computing Gradients

At each time step, the RK irgeation formula is a function of the current state estimgtend the
r control samples = (Uy g, ...,0k,). SoletF:R" x (>s< R™) - R" be defined by

F(X, W)-x+AZbK(x wG) , (5.1)
i=1
wherew = (wy, ..., w,) >r< IR™ is being treated as thraxr matrix [w; ---w,], G was defined
in (4.5d), andK;(x,®») was defined in (4.3b) (withw = wGLID R™*®). Then, referring to
(4.3a,b), we see that foryan = (£, 0)[J Hy, with Hy defined in (4.14a),
Xy = F (X O) . %o =&, KA (5.2)

The denative d F(LI)with respect to thg-th component ol is, with | ; defined in (4.4b),

ZbK(x wG)

Fw, (X, W) = a -
] i=

=AY 7ZbK(Xw)

i O i=1

=A Etmhu(YKX w)W)+Athx(Y(X 0), @) IZl i K p (X, w)D, (5.3a)
IO

wherew = wG andY; (X, @) —x+AZJ -1 8 jKj(x, 0).

The net theorem preides an epression for the gradients of the functioff§(0} v q,
given by (4.16). Forn = (&, u) H, we will use the notatiorl, fy (1) = (;’—g, fy(n) and

-38 - Chap. 2



od - d d d

dqu(ﬂ)iDdTOl fn (@) - - do fa(@) --- fn(Q) - - A0y
, i -1y

£ ooy O
d0ys fn () O (5.3b)

to indicate the devitive with respect t& and the discrete-time deative with respect to the con-
trol samplesd = V n(U), of fy(Wa (7). Notethatdg fy () R™ N is a *short-fat” matrix.

Theorem 5.1 (Gradients of Aproximating Functions). Let NN, gz Hy and
1= Wan (7). Also,letM I RN N be theN-block diagonal matrix defined by

M N = dlag[AoM ,A]_M e e ,AN_]_M ] , (54)

whereM = M, for representatiolR1l and M = M, for representatiofR2, and a@in, we intro-
duce the notatiomy, =t,,1 —t, in anticipation of using non-uniform meshes in later chapters.
Then, for eacw[I] g, the gradient off (0}, O fy, : Hy — Hy, IS gven by

O = (0: 5, Duflim)) = (d: Fi ), Val (da FX () M) ) (5.5a)

where Van :V,in for representation R1, Van =V,§’N for representationR2 and
d fx () = (ds fN (), da f () )ID Hy is defined by

ds () = 02", X%) + p6™" (5.5b)
da FN (k) = Fu, (100" pel . kD« jr, (5.5¢)

with pﬁ'ﬁ determined by the adjoint equation
Pk = Fx(X ) Plers PR = X(EXQ)T, KA, (5.50)

and whereF, (L) and Fuw, (G101 denote the partial desdtives o F(x, w) with respect tox and the

j-th component oiv.

Proof.  First, we note tha¥  is invertible by Proposition 4.4 and3  is invertible by Propo-
sition 4.7. Next, referring tq2, p. 68], we see that; fy (7) is the gradient off (77) with respect
to £ Similarly, dg Ty (77) is the gradient offy (7) with respect taill L<>r< IR™ using the standard

I, (Euclidean) inner productdence, the Gaaux diferential of fy; is given by
Df{(n; 67) = D f{(7; 67) = (d: TN (n), 6€) + ( do Fi(m), 501),,

= (d: fN(m),6¢) + (da PR (MM, sa) ¢,
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= (d: fN@), 8¢) + (ViR (da XM, 8u),, (5.6)
where 67 = (6¢,6u) Hy and 677 = (6&,60) = Wa n(677). Since by definition of Oy (),
DfY(n; 617) = (O (%), 1)y for all 5700 Hy, the desired result folles from (5.6). 0

Note that fory[0 Hy, 7 = Wa n(7), dg i (7)kD >r< R™ and

1 FVv 34 -
(Ou i) - Dufi(lewi]) = 5 (daFi@ka - dafidr )M B7)
wherei ;D I, ji0r andU, f(7)[7«;,] is omputed according according to (4.6e) or (4.11c).

Remark 5.2. At this point, we can dwa one \ery important conclusionFor every v(11 q, the
steepest descent direction, iy, for the function fy(), at 7, is gven by
—(ds fu(m), dg fu (M M), and not by-(de i (n), dg fi (1)) which is the steepest descent direc-
tion that one wuld obtain using the standargdinner product or?\l<>r< R™. The nave gproach

of solving the discrete-time optimal control probl&@Ry using the latter steepest descent direc-
tions amounts to a change of metric that can resultveresdl-conditioning, as we illustrate in
Section 6. 0

We @an nav define optimality functions for the approximating problems, using the form of
the optimality function presented in (3.9b), for the original probldfor CPy, we define
on:Hy - R, with ¢ > 0and the seil defined in (4.15c), by

. O O
on(7) = min maxgmax P‘l}\l(n!n’)_l//o,N(n)_GI//C,N(U)H max PKj(n,n')—wc,N(n)m (5.8)
7' OHy Ij/DD o vD 0ctdo D

wherey y (7). = max {0,y (n) }, and for vl g,

Pl ) = 50 + (D50, = 1) + 3l =7l - (5.8b)
If needed for a particular numerical algoritheng([64] ), On(77) = 6n(7), wherez = Wa n(17)

and

N =\ = H 1 =1 _ S|l = I
on (1) _ﬁ’rBIEN A 77|||24N +ON(7,77') (5.9a)
with

= =1\ — FV (= g g -1\ =1 =\ _ — — — —
On (7, 7) = max{ max () + ((de TN, da N M), 7 = 7) 5, = Fon () = 0We N (@)+

e () + ((de i), dufR M), 7' = )y = e} . (5.9b)

and the sel is defined in (4.15d).

It should be obious that these optimality functions are well defined because of the form of
the quadratic term and thact that the minimum is tek oer a st of finite dimension.The
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following theorem confirms that (5.8a) satisfies the definition for an optimality funciibe.
proof is essentially the same as the pro@b& Thms. 3.6,3.7].
Theorem 5.3. (i) on(0is continuous;(ii) for every n1 Hy, 6x(77) < 0; (iii) if R0 Hy is a

local minimizer forCPy thenédy(77) = 0. o

Remark 5.4. It can also be she that 9N(’7\7)=O for ’7\7D]] Hy if and only if
dy Wy (7,77 =) = 0 for all yi0 Hy where

Wn (17, 7") = max{won(1) = Won(') = ovwen()s s Wen(m) —wen(@)+} - (5.9¢)
O

Proposition 5.5. The stationary points for probler@Py, that is, the pointg Hy such that
on(7) = 0, do not depend on the control representation.

Proof  First, 710 Hy is such thaBy(7) = 0 if and only if Oy (7,7') = 0 for all 7 DHy. The
“if direction is olvious. For the ‘only if” direction,
on(n) = minﬁ, OFy {12|7' - 77||ﬁ—|N +0On(7,7')} = 0. Thisimplies thatOy(7,7') = 0 because
On(F,7) is linear in 7' whereas 1/B - 77||,24N is quadratic in 7. Second, let
én = (6¢,60) =7 — 7. Then, for eacll[l! q,

((de TN (), da PN MR, 7= 71) i, = (d: FU (), 8€) + (dg (), 60),,,  (5.90)
sinceM y is non-singular Hence Oy (77, 77') does not depend on the control representatidrus,

the points7 such thady (7) = 0 do not depend on the control representation. O

This proposition says that the numerical solution of the discretized problem is the same for either
control representation.The search directions and the control functiowiy,\()‘l(u*) and
(V2 ) 72(d") will, of course, be dferent.

2.5.2 Consistenc y of the Appr oximations

To complete our demonstration of consistgntapproximations we will sh@ that the optimality
functions of the approximating problems satisfy condition (2I8)fact, we will shav that the
optimality of the approximating problemggocorverge to the optimality function of the original

problem {.e., — 6y 2 —-0). Firstwe will present a simple algebraic condition which implies con-

vergence of the gradientaVe will use the column efctorEDD R" given by
b=(b, b (5.10a)

with componentgj defined in (4.10a), and also thalwvesd; defined in (4.10D).
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Theorem 5.6. For representationR1l, suppose that Assumptions 3.1, 4.1’ and 4.3 hdtdx
representatiorR2, suppose that Assumptions 3.1, 4.1, and 4.6 hdidt NI N, let Hy be
defined as in (4.13a), withy = L} or Ly = L%, and let f} :Hy — R, v(II q, be defined by
(4.16). LetM = My if Ly = L} and letM = M, if Ly = L%. LetSbe a bounded subset Bf
If

M6 = 1 , (5.10b)

where 1Lis a @lumn \ector ofr ones, then therexists ax < co and anN" < co such that for all
n=(&WMSN HyandN = N,

[ R € RN )] TS (5.10c)

x
N
Proof.  To amplify notation, we replac@’z by x,, and p];'ﬁ by pi. LetS O B be bounded and
letn = (&, u)lD S N Hy. Lett =V n(u)and 7 = (&, 0) whereVp \ = V%\,N for representation
R1andVa \ = V,§,N for representatioR2. For eachj r and k(I A Fw, (Xk, Gy) is gven by

(5.3a). Sowith Y\ ; =X + Azij;ll a; | K (X, o) and @y = UG, there gistsx; < oo such that

IFu, (R T — 8B 1y (Re, i)

< [IFw, (X, U) = A 2 brhy(Yier, G )l + "AIE[DZI byhy(Yi,, O j) — AE] hu (X, T I

o ,

S i-1 9
<N ¥ 2 bihy(Yii, oxi) 2 Ey) Kp (R, o)l + A 2 byllhg(Yi, O j) = hy(Xi, Gy j)I
Im 1 i=1 p=1 0w o

<K A? (5.11a)

where we hee used the Lipschitz continuity df, (LI} and the ct thatS bounded implies thag,
and 0y ; are bounded, which implies that for gllllr, Jhy(Xy, G ;)] and [hy(X, G ;) ae
bounded. Thereford,follows from (5.5c) that

dg Fr Mk = [Fut (Rieo )T P« + - Fur (Ris Uie) " Plisa]
= A[Elhg(iw l]k,l) pK+1 e 'Blr hI(Xk1 l]k,r) IjK+1] + O(Az) ’ (5'11b)

where limy _ o[O(A)/A| < 0. From equation (5.5a)Va n(0yfi(m)) = dgfr(m) M. There-
fore, from (5.11b) we obtain, for eadiT] A]

0% (5110
A

A _
Van(Ou i@k = A (Elhu(xka Uk1)" Phoy - 'Er hu(Xk, Okr) " I5‘|2+1)M L+
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At this point we must deal with our bacontrol representations separateRor representa-
tion R1, u(D[D U}, is a Lipschitz continuous polynomial on each ingft, ti.1), with Lipschitz
constantq givenin (4.15a). Thusfor aryi;,ijJ I, with j, |0 r andl defined in (4.4a),

ok, ; = Oill = ulzis,] = ulz Il < xulA(ci; — i)l < kol (5.12)

where Assumption 4.3as used to justify the last inequalitfow, let
D = [b3h] (%4, G ) Bl B W (%4, B Bl M7 (5.133)

and letDj, j(r, denote thej-th column ofD, so that, from (5.11c),
Ou fN 7ki ] = Van(Bufi@); = Dj +O() . (5.13b)

It follows from Assumptions 3.fl(a) and 4.1’, equation (5.12) and treef thatpy,; is bounded
for ary 70 S, that there ®sts x5, k3 < 0o, such that for ay jlIr andi;IJ I, and with M[jl
denoting the, j-th entry ofM ™,

r r
1P = (it Oy)" Pl = b, M3 < 1> B[ (% Uii) = Mu(Re T )17 plaa M2
i= i=

r
< Zl Kallti = T Il ks M < A3 (5.13c)
i=

Also, if ME =1 thenY{_, M} b; = 1snce M is symmetric.Hence for ap jO,
ID; = hu(X, Uk ;)T Phaall < K30 . (5.13d)
Therefore, from (5.13b),
Ou fX 7,1 = hu(, U )T Plea + O) - (5.13e)

For representatiorR2, G() is ot Lipschitz continuous ont], t,.+1), so (5.12) does not hold.
However, snce M = M, is diagonal, equation (5.13e) is seen to be true directly from equation
(5.11c) ifMb = 1.

Next, sinceS is bounded|(i) by Lemmas 4.10) and A.4 there xsts x4 < co such that
% = X"(t)1 < k42 and [Py = P (tsa)l < 548 and (i) Piey andhy (%%, ufz; 1) are bounded.
Thus, making use of Theorem @/Rand equation (5.13e), thadt that bothx” () and p"" ([} are
Lipschitz continuous, anu{rk,ij] = Uy j, we conclude that therexests ks < oo such that

1B £ )7k ] = Ou fR @)z

= Ihu(X"(zi, ), Ulzii, DT PP (7i,) = hu(Ri ULz 1) Psn)l + O(B) < &5 (5.14)

Next, for ji r, ;00 I, kKOO A and tD [0, 1] we have that
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1B £ ()(®) = Oy R () O < 100 £ ()(0) = Do £ @)z M+ 186 7 )i ] = Ou X @)

+ [0u R ()7 ] = Ou R ()OI - (5.15a)

The second term in (5.15a) is ord®@) by (5.14). We will show that the first and third terms in
(5.15a) are also ord€¥(A). Firstconsider representatidRl. It follows by inspection of (3.6h)
in Theorem 3.@/) that O, f"(7)() is Lipschitz continuous on(T] [ty,ty.+1), KOO A, because
u L is Lipschitz continuous on these intals. Sincel, f{(7)(000 Ly, it is dso Lipschitz
continuous on these intetg. Finally by Assumption 4.3y, [tk, teeq] for all KOO A; Thus,
the first and third terms are of ordé@(A) for all tO[0,1]. For representationR2,
Ou fu(7)(DMD Hy is constant onlM [ty +dj-q, ty +d;), j00r andkd A, Since ul] L2 is con-
stant on these inteas, it agin follows by inspection of (3.6b) in Theorem @that, f¥(7)(I)
is Lipschitz continuous on these intaly. Finally by Assumption 4.67y, [ [ty +dj-1, t +dj],
for all KO A’and j(I0r. Sincedy = 0 and d, = A, the first and third terms are of orde¢A) for
all tfJ [0, 1]. We mnclude that therexest kg < oo such that

B ¥ ()(t) = Oy F @] < x6A , tI [0, 1] (5.15D)
which implies that

1B £ () = D fu e < x6dd - (5.15c¢)

Next we consider the gradient with respect to initial condit&ngrom Theorem 3.&) and

(5.5b), I7; £ (n) = ds () < 104 (£, X7(1)) = 08 (£, %)l + 19"7(0) = pgll- Thus, sinceSis
bounded, it follavs from Assumption 3(b) and Lemmas 4.10 and A.4 that thexésEs k7 < oo
such that

10 £ (7) = de R (1 < w7 (IX7(1) = %nll+ 1p"7(0) = BBl < w7d . (5.16)
Combining (5.15c) and (5.16), we see that th&gt®x < oo such that for anny[I SN Hy,
K

(AU RRNUIY] FEy

(5.17)
O

The follonving proposition states conditions for (5.10b) to hold.
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Proposition 5.7.

(@) SupposeM = M;. Then (5.10b) holds if and only if the ctiefents of the
Butcher array satisfy

S
Elbjdj_l =7, =1, (5.18)

(b) SupposeM = M,. Then (5.10b) holds if and only if for gl r, EJ- > 0.

Proof. (a) For M = My, it follows from (4.9b) thaM‘1E = 1 ifand only if
T'THiIb(s)'lT'1E =1. (5.19a)

Now, it is easy to see that

DZJJEE o ysub o D1o

6 B O3S bc O /20
S DZJ 1% 0. g 2i=Pici g 312 (5.19b)
0 0°0

%J lE o 1% [EJ lb ¢'0 oo

where the last equality holds if and only if (5.18) holtikte thatT'lg is then the first column
of Hilb(r). Consequently

010 0o
(/20 0
HiIb(r)‘lT‘1E = Hilb(r)—lg./ 0= %)D, (5.19d)
O-0 OO0
k0 00
which leads us to conclude that
oo oo, -+ d'mo 0o
U [ ¢ c1p0 QA0
M'1E=T'TDD o * . ? mo-00 (5.19¢)
0o O : oo g
oo M ¢ - c{r‘lD@D a0

(b) For M = M,, given by (4.12b), M is non-singular if and only iEji 0. Also, (5.10b)
0
holds if and only iftM1L. = b. Clearly then, iiji 0, (5.10b) holds because

Egl Dulm
ML= Dg_b (5.20)
g Er DEj-D
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Remark 5.8. The conditions (5.18) on the cfiefents of the Butcher array for representation
R1 are necessary conditions for the RK methods to-theorder accurat§l,62]. Thecondition
with| = 1in (5.18) is the same as the second part of Assumption 4.1’. a

Theorem 5.9. For representatiofRl, suppose that Assumptions 3.1, 4.1’ and 4.3 and equation
(5.18) hold and letl = 2. For representatiofR2, suppose that Assumptions 3.1, 4.1, and 4.6
hold and letd be the least common denominator for the elemept$ll s, of the Butcher array
LetN={d'} 2, and suppose thatny } nmk, K O N, is auch thatpy [ Hy for all NID K
andyy — 7asN - oo. Thenéy(7y) - K 6(7) asN = oo.

Proof. LettE :H xH - IR be defined by

0 0
"E(TL 1) = max [ max r "(mn") = wo(n) — owe(n)s , _Max F 1" —we(m+ 0O, (5.21a)
DVDD Jdo vl gc+do 0

[J
and¥y :Hy X Hy - IR be defined by

a a
B, n') =maxgmax (. 1) - von(n) — oven(n) . max Fi(nm) -ven(D.  (5.21b)
DV qo Vi qc+qo D

so that, 6(n) = min, gy ‘E(ﬂ,ﬂ'), and 6n(7) = min, gy, LEN(n,n'). Now, suppose that
{ 7n} Nk IS @ sequence such that, for ldll 70 Hy andy — < 7. From the proof of The-
orem 4.12711 H. Let?;D]] H be such tha#(n) = LE(n,?;), and let{ 'y } Nk be aly sequence
such that, for alN, 7'y Hy andy'y —K 7. Then,

0 ]
On(IN) SWPn(ins ') S W (N 'n) +

a
max_me Fne ') = T2 (')} = o) = valm)] = [oven () = ove(mn). 1.

O
Lmax (TR, ') = £ ')} = Wen () = welml o (5.22)
C [} D

It follows from Theorem 4.12, Theorem 5.6, Proposition 5.7 andatttetfat{ 7 } Nk IS @
bounded set, that each part of the max term on the right hand side of (522ye®to zero as

N - oo0. The quantityLE(nN,n'N) corverges t06(y) sinceny —K 7, 1’y —K 7 and LE(DD] is
continuous. Thus,taking limits of both sides of equation (5.22), we obtain that
lim oy (nn) < 0(7) ( this praves that (2.3) holds for the optimality functions of the approximating
problems). Nuw, for all NII K, Iet?;NDD Hn be such thaty(ny) = LEN(UN;?N)- Then,

o(nn) LE(UNv’;]N) and proceeding in a similaa$hion as (5.22) and taking limits, we see that
o(n) <lim 6y(7n).  Hence, together with the préous result, we can conclude that
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on(nn) - 6(n) asN - co. O

Since the union of the spacks, is dense irH,, ,, and Theorem 5.9 holds, it folles that
the typographs of the optimality functiorg () corverge to the typograph of the optimality

functiona(D)], in the Kuratavski sensei.e., — 9y (D! = -6(0L

The follonving corollary is a direct result of Theorem 4.12 (epieogence) and Theorem
5.9:

Corollary 5.10. (Consistency) For representatiofRl, suppose that Assumptions 3.1, 4.1’, 4.3
and 4.11 and equation (5.18) holHor representatiorR2, suppose that Assumptions 3.1, 4.1’
4.6 and 4.11 holdLetN = {d'} 12, Whered = 2 for representatioR1 andd is the least com-
mon denominator of thgj, jOs, for representatiorR2. Then the approximating pairs
(CPn, 6n), NI N, are consistent approximations to the p&P(6) . O

We onclude this section with a conjecture concerning the constrainjig, oy}, used to
defineU,l\l in (4.15a). Recall from Remark 4.9 that these constraints impose a Lipschitz continu-

ity constraint on the indidual polynomial pieces oflll] Uy =V;,1N(UlN) that is needed to

ensure accurate RK imgmation for controls defined by representatitih Clearly, the addition of

these constraints, which do not appear in the original proBIenis a ruisance. Conjecturg.11
proposes conditions under which these constraints are not needed to define consistent approximat-
ing problems CPy, #y) using control representatioRl. Assumption 4.6 (needed for control
representatioR2) is required in place of Assumption 4.3.

Conjecture 511. Suppose that the approximating probledi%, are defined according (4.17a)
with Hy = R x V31 (Uy) where

Op ={um Ly |GIMU VjDr, KOG . (5.23)

Furthermore, assume that Assumption 3.1, 4.1’, 4.6 and 4.11 and (5.18).abNl= {2| } .
Then the approximating pair€Ry,6y), NN, are consistent approximations to the pair
(CP,0) . |

The basis for this conjecture is treef that, according to Proposition 5.5, the control samples of
the approximating problem solutions do not depend on the control represengitioa.we hee

showvn that the approximating problems, along with their optimality functi€@B, (), defined

with control representatioR2 are consistent approximations tGRy, 8y), we knav that the
convergence results of Theorem 2.2 holbh particular we know that strict local minimizers of

CPy corverge to drict local minimizers ofCP. But this must also be true under representation

R1 with CPy defined according to Conjecture 5.11 since the control samples for the sequence of
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solutions generated by solving these approximating problems is the same as for the approximat-
ing problems defined using representatiih Thus, if a sequencé GN*} of control samples
corresponding to the solutions for the problefrGPy } is auch that \(/f\,N)'l(UN*) K u*, then

it is also true that\(x ) (ay") - . For eachN, letuy" = (VA )™ (ay"). Then,because

{ uN* } ko k IS @ comergent sequence, theraists xy < oo such thatliy(z1) — un(72)] € xy for

all 71, o0 [ty, teeq], KOO A, Hence, Lemma 4.10 holds which implies that Theorem 4.12 and
Corollary 5.10 hold.Note that, een if this conjecture is not true, the main eengence results
provided by the theory of consistent approximations do hold for the reason just presented.

2.6 COORDINATE TRANSFORMATIONS AND NUMERICAL RESULTS

The problemsCPy can be solgd using risting optimization methodseg., [64,65] ).
These methods, he@ver, ae defined on Euclidean space amxistng code wuld hare © be
modified for use on the cdifient spaces[i,\,, i=1,2. To avoid this difiiculty, we will now
define a change of coordinates in ioefnt space that implicitly defines an orthonormal basis for
the subspaclai , and hence turns the cdiefent space into a Euclidean space.

Let Ly = Ly or LY and, correspondingly}a y = VA y Or VA . Recall from (5.5a) that,
for = (£, ) Hy and v g, O, fX(7) = Van(da fA() M), where 7 = (&,0) = Wa n(7)
andd, fy (r), defined in (5.5¢), is the gradient B () with respect to the standalglinner prod-
uct on?\|<>r< R™. The gradient offy () with respect to the inner product dn is given by

Ouf@) = Van(@u i) = do fi(n) MY, and satisfies

(OufR(m). sun) 2 = (Ou X (7). 60) ¢ = (dg (), 50) (6.1)

|21

for ary sull Hy and 80 =V n(SUu). Introducea rew wmeficient spaceEN = ?\fx R™,
r

. . _ []
endoved with the standardl, inner product and norm, and a transformat@nlLy — Ly
defined by

d=Q)=uM¥?, (6.2a)

[
whereM y is defined in (5.4).Let § = (£, &) and for eachv(I] g, let P‘,’\, 'R"xLy - R be
defined by

PR = f(@ M) | (6.2b)

Finally, let7 = (£, Q7X({)). Then,by the chain rule,
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Og PR () = QX Ta Fi () = du () M2 | (6.20)

Thus, (g PR (7). 88}, = (Da @), 60) ¢, = (0, Fi(n), 5u) 5, wheresd = Q(5).

Remark 6.1. Implicitly, the transformatiorQQ creates an orthonormal basis fog because
under this transformation the inAg@roduct and norm ohy are equal to the, innerproduct and
norm on the coditient space With this transformation, the approximating probledi%, can be
solved using standard nonlinear programming methods without introducing ill-conditidmiisg.
important to note, heever, that control constraints are also transformdthus, the constraint
a0 Uy becomes?M Y2 Uy. For representatioR1, snce M2 is not diagonal ¢ecept if
r = 1), this means that the transformed control constraints will, for KddH\; invdve linear

combinations of the control samplgﬁyj, jdr.

We will now present a numericakample that shws, in particularthat this transformation
can mak a sibstantial diference in the performance of an algorithm.

Example. Consider the follwing linearquadratic problem taa from[42]:

min f(u), f(u) =x3(1) , (6.3a)
wherex(t) = (x4(t), Xx(t))" and
0o 0.5x; +u _ag
X7 10.625¢ + 0. 5qu + 0. 520 x(0)= 0o oo, 1. (6.3b)

The solution to this problem isvgn by
d*(t) = - (tanh(1-t) + 0. 5) cosh(t t)/ cosh(1) , t [0, 1], (6.4)
with optimal costf (U') = e?sinh(2) / (1+ €%)? = 0. 380797.

The approximating cost functions afg(u) = (0 1) x§ where {x}'} K, is the RK solution
for a given control ullJ L. We dscretized the dynamics using the feliag common RK meth-
ods of order 3 and 4 respeety:
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w
|
= N O
N[
= NI N O

[l
winN [N
ol

or | O O Nk
Wik | O NIk
Wik |

[l

The matricedM  used to define the transformati@nin (6.2a) are gien by (4.9d) and (4.12c)
with

1D4 2 -10 1E& 0 0O
Mlzﬁgz 16 24, MZ:EEb 4 og. (6.5)
Tl 2 4 M 0 1

The matricesM; and M, for methodA; are the same as for methédd sincec, = c3 = 1/2
impliesr = 3 and Ez =2/3

We olved the approximating problems using steepest descent with the step-size determined
by an Armijo rule augmented with a quadratic fit based onahe\of f () at the last tvo evalu-
ations in the line searchThe stopping criterion as |d, fylb < (3. 18- 4) /NT and the initial
guess was u(t) = 0, tlI1 [0, 1]. Table 6.1 shws the number of iterations required to soflie
approximating problems for dérent discretization iels N with and without the transformation
(6.2a,b). V¢ xe that solving the discretized problems without the transformation requires about
five times the number of iterations required for solving the problem with the transformahen.
situation can beven worse for other RK methodd'he choice of representati®i versus repre-
sentatiorR2 and the RK method had ndedt on the number of iterations required.

Number of Iterations
. 1
N M=M,;,i=1,2 M= —1I
N
10 4 19
20 4 19
40 5 23
80 5 24

Table 6.1: Conditioning Efect of the TansformatiorQ on Approximating Problems (RK3).

We will now show why it is advantageous to treat the repeated control samples for method

A, as a single samplef( Remark 4.9). Let {uN*} nomns N O N, be lutions of CPy and

T Higher precision s dificult to achiee when theQ transformation s not used.
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supposaly” — U whereld is a solution ofcP. In[57, Thm. 3.1], Hager establishes, for sym-
metric RK methodf66,67], a tight upper bound on the erfgf = [Va n(U") = Van(an)l, of
second order ith = 1/N for smooth, unconstrained problentdote that\/A,N(u*)k,j = u*(rk,j),
k(D A and jl0r becaused’ ([ is continuous (in &ct, smooth) for smooth problefi2s,36].
Hager used the problenvgh in (6.3) to demonstrate the tightness of this bourat.the particu-
lar RK method gien by the Butcher arrayA,, we can state the folleing improved result (which,
according to Proposition 5.5, does not depend on the control representation):

Proposition 6.2. Let CP =minypy f(xY(1)), u unconstrained. Suppogshe approximating
problemsCPy are produced by discretizifgP with the fourth order RK method with Butcher

arrayA,. Further suppose thaM“* Q- X“*N’N" = O(A%), that is, at the RK inggation is fourth
order accurate af’. Let {uy*} nmn, N O N, be olutions of CPy and supposely” — U°

whered' is a solution ofCP. ThenER = |Va n(U) = Van(un')lh, = O&3).

Sletch of Proof.  In[42], it is shavn, using a reasonable non-singularity assumption on the Hes-
sians offy (0, that the accuracof the solutions of the approximating problems is determined by
N times the size of the discrete-time ddtive (Using the standart, innerproduct) of the
approximating problem af =V, ("), that is,Ef{ N[y fyy(U)]. This,in turn, is a function of

the accurag of the state and adjoint approximatiorsor the RK method under consideration,
Hager shws that, fork(T] 4 the \ariablesd' ; = u*(t,) and ' 3 = U" (t, + A) are third order
approximations tou'(t,) and U(t, +4), respectiely. Thus, we need only sho that

d 2= U (tx + A/2) is a hird order approximation td' (t, + A/2).

Let Yy = X + 5 h(Xk, Ug 1) and Yy 3= Xk + 5 h(Yy 2, Uy 2) represent intermediatealies
used by the RK method at thke-th time-step. In Hagers rotation, Yy, = y(1,k) and
Y3 = Y(2,k). Hagerintroduces a cleer transformation, specific to symmetric RK methods, for
the adjoint ariables so that tlgecan be vigved as being calculated with the same RK method
used to compute the statariables, bt run backwards in time. The intermediate adjointavi-
ables of interest here are denotedgf®, k) and q(1,k). With this transformation, the discrete-
time dervative for the approximating problemsvsathe same form as the continuous-time gradi-
ent for the original problem. Since c,=c3=1/2
da fn (k2= 5405 hu(Yiez, U2 Ta(L.K) + 5 hy(Yiea, U 2) a2, K] Further  since
28 hy O (ty + 8), U (t + 2)TpY (4 + 2) = 0, [dg Fy (8 )i 2ll is bounded by2 A times the maxi-
mum of (Y2 + Vi) /2 = 7 (t + $)l and [(@(2, K) + a(1,K)) /2= p (1 + §)I. Let

Yo Y, A A
w(k) = =222 = i+ [k Bier) + (% + 5 (e, T ), Bi2)]
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U

A
=Xkt o [h(X, 0 1) + h(Xk + A'h(X, T 1), T 2)] (6.6)

whereA' = A/2. Thus, w(k) is produced by the immenl Euler rule applied tax,. Since the
local truncation error for the impred Euler rule is orderO(A%) and %, is order O(A%Y),

||w(k)—x”*(tk+%|| is ader O@%. In the same wy it can be shan that

la(2,k) + q(L,k) /2 - p (t, + Sl is OA3%). Thus,we can conclude thddj fi (U )k 2l = O (A%
for all kD4, This implies that the solutions of the approximating problems satisfy
I8 N j = U (zii, )l = O(&%) for all KD Aland D . O

Table 6.2 summarizes our numerical results using the RK method with ButcherAarray
The first column gies the discretization kel. Columns2 and 3 shav that doubling the dis-
cretization results in an eight-fold reduction in the control erfdws, as predicted by Proposi-
tion 6.2, EY, is O(A%). Thenext two columns, agreeing with Hagertbsenations that the opti-
mal trajectories of the approximating problemasge to those of the original problem with the
same order as the order of the symmetric RK methody ﬁhnE,{, =|f () - f(ay)] is order
O(A*. Thenumbers in columns 2 and 4 were obtained by solving the discretized problems to
full precision. Finally, we include in the last tw columns the number of iterations required to
solve the approximate problem with and without the transformafjonThe stopping criterion
was the same as used foafle 6.1. As with the preious method, the &fct of theQ transforma-
tion is quite significant.The solution of the untransformed problem requires aboeaitifies the
number of iterations required to selthe transformed problem.

Accurag of Solutions Numbenf Iterations
N EY EY/Edy =N EVEL | M=M,i=1,2 | M= %I
10 1.48e-4 7.91 2.86e-7 16.22 4 21
20 1.87e-5 7.99 1.76e-8 16.13 5 21
40 2.34e-6 7.62 1.09e-9 16.07 5 23
80 3.07e-7 6.80e-11 5 23

Table 6.2:Order of Comergence; Conditioning Eéct of the TansformatiorQ (RK4).

The last table shws the accuracof the gradients for the approximating problems produced

with the second RK method (Butcher arésy) evaluated at the contral(t) = —1 + 2t. The first
column shws the discretization W& N. The second and third columns confirm that the gradi-

ents, 0 fy (0) = dy fy (UM f\,l, for the approximating problems a@nge to the gradients of the

original problem. Note that, based on the proof of Theorem 5.6, it is enough te gz the
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gradients coverge & the pointsfk‘ij, KD AG ji0r, and i 1. The fourth column of dble 6.3
shaows that the gradients that result if one uses the stamglamder product or?\|<>r< R™ do not

corverge.
M= M; M= M, M= 2y
N
N || IVan(OF(u) - Ofy(@h, | INan@FW) - Ofn@l, | IVan(@f(W) - Ndy fy (@),
10 1.67e-3 6.46e-4 1.48
20 3.77e-4 8.31e-5 1.48
40 9.94e-5 1.05e-5 1.48
80 2.55e-5 1.33e-6 1.48

Table 6.3:Corvergence of Gradients.

2.7 APPROXIMATING PROBLEMS BASED ON SPLINES

In this section, we use splines as the finite dimensional basis elements in the construction of
approximating problems for optimal control problems with endpoint inequality constraints and
box-type control constraintsOne of the early references that used splines for the solution opti-
mal control problems {85]. We show that the resulting approximating problems, along with
their optimality functions, are consistent approximations to the original problem with its optimal-
ity function assuming that Conjecture 5.11 is trirethe process, we will delop some results
for splines that are interesting for thewrosale. For clarity, the results bels are stated only in
terms of control &riablesu rather than the initial state/control paie= (£, u). Thetreatment of
variable initial conditions is unédcted by the use of splines.

We will construct our finite dimensional control spaces using spline basis functions (B-
splines). Thusfor rO N, r =1, let

LO = (uDLD,0,1] [ ut)= 3 ey, O[O, 1]} (7.1)

wherea [T R™, ¢, : [0, 1] — IR are the basis function withy(t) = By, (t), defined belw, and

r is the order (one more than thegdee) of the polynomials that makp the spline pieceskor
an «cellent presentation of spline thepwe refer the interested reader{68]. Thesubscriptty

in By, (1) is the knot sequence upon which the B-splines are defWedwill not consider knot
sequences with repeated interior knots althoughynwirour results hold in that case also.
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Rather we will consider two knot sequences which are constructed by adding endpoint knots to
the set of breakpoint§t, } ﬁ‘zo (note that, unlik in[63], our breakpoint sequencegires with the
index k = 0 rather thark = 1.). Thetwo knot sequences are

Uniform knot sequence. The knot sequence is

tn = {k/NYRIT (7.1b)

General knot sequence. The knot sequence is
tn = {te} ey (7.1c)
where {t} is a £quence of not necessarily uniformly spaced breakpoints which satisfy
L= Stg <ty <o <ty <N = S lngroa (7.1d)

The uniform knot sequence can only be used for uniformly spaced breakpdietqaurpose of

its introduction is solely to makome results cleaner and easier to SHee spacing of the break-
points, {t.} {2':0, for the general knot sequence may or may not be uniftmrour notation, the

knot sequences pim with index k = —r + 1 (rather thark = 1 as in [63] ).

With these knot sequences, the B-splines constitute a basis fiir+the- 1 dimensional
space ofr —2 times continuously digérentiable splines of ordar with breakpoints at times
{t} E‘zo. Since splines are just piesese polynomials between breakpoints with continuity and
smoothness constraints at the breakpoin{g, (] L whereL} is defined in Section 4 for repre-
sentationR1 with r-th order polynomial piecesThe control samplesy[z;], k =0,... N -1,
jTr, used by the RK ingration method geen in (4.3a,b) are related to the spline dméEnts by

_ S N+r-1
Ulzij] = 2 el )-
We will use B-splines normalized so thi i * By, (t) = 1 for all trI [0, 1]. For a
given knot sequence, these B-splines can be written§8¢¢ in terms of the follwing recursion
on the spline order:

t =ty t —t

Bir+1p, (1) = ﬁ Bi-1yt, (1) + t -1 By » r=1, (7.2a)
- -r- -
01, tyg St <ty

Braa (V) = EO aherwise (7.2b)

If ty is the uniform knot sequence, the domain of the B-splineends outside of the range
td [0, 1]. This is for the purpose of construction only; the functiaft, given by (7.1a), are
defined only ontI1 [0, 1]. An important feature of B-splines is that the support of each basis
function, ¢, (t), is limited to [.-,,t]. Thisis important for dfcient computation ofi(t) from its
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spline codicients and of gradients for the cost and constraint functions.

As an eample of B-splines defined on a uniform knot sequence xpress the basis func-
tions for cubic splinesr (= 4) eplicitly (compare witH35] where the B-spline normalization is
different):

O

D (t - tk—4)3 ] tk_4 < t < tk_3
1 OA%+3A%(t — ty_3) + 30(t — te-3)® = 3(t —tya)®, ta <t <ty
Brat (1) = o3 O 3 2 3 . (7.2¢)
64% o 403 - BA(t — ty_p)? + 3(t — tyn)® teo St<tg
0 A3 = 3A%(t — tyeg) + 30(t — teer)® = (t —tn)®, tea St
O

where A = 1/N. As another eample, we plot the B-spline functions for a quadratic spline
defined on the general knot sequefi€e0,0,0.1,0.25,0.3,0.4,0.4,0.4in Figure 7.1.

We row formulate the approximating problems using splin€se control constraint sets
for the approximating problems are defined as,

Ul ={uDLY |e@mU,k=1,... N+r -1} (7.3)

where, for this section, we assume thatised to defind&J in (3.3a), is of the form

Parabolic spline basis functions with non—uniform breakpoint sequence.
T T T

0.‘1 » O.é5 O‘.3 ‘ 0.4
Time
Fig. 7.1: A plot of the six B-spline functions used to construct
guadratic splines defined on this general knot sequence.
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Uz={v=]} .. VMR |-cw<a sV <b <o, i=1,...m}. (7.3b)
Thus, the spline cofifients for each component of the controldanstant bounds.

The approximating problems are thus:

CPy, miLTm {won() |wen(u) =0}, (7.3¢)

ulld Uy

with w, \(U) and y n(u) as defined in (4.17).We will keep the definition of the optimality func-

tions the same aswgh in Section 5. Note that the decision parameters for these problems tran-
scribed into codicient space are the céiefentsey, k = 1,... N +r -1, rather than th&r con-

trol samplesu[zy ;], k=0,... N-1, j=1,...r for the approximating problems defined in
Section 4.Thus, the number of decision parameters needed for splines is substantially less than
the number needed for the same order generalvpigeg@olynomials.This is the motiation for

using splines.

The net three results state properties of the spline subspaces that are needed ®ipro
cornvergence of the approximating problems to the original probl@moposition 7.1 and Corol-
lary 7.2 apply only to uniform knot sequence3orollary 7.2 is a non-recux& vasion of the
subdvision result gren in[68, Thm 3.1]; the method of proof is completelyfetiént. Asimilar
result for general knots sequencespressed in terms of a recursion formula, can be found
in [69,70].

Proposition 7.1. (Nesting of Basis Functions) Given an integer p=1, let

ty = {k/N}2"Fandty' = {k/2N} 2420 Then,

1 st
Bk,p,tN(t) = ﬁ zl Opi BZk—p+i-l,p,tN’(t) , k=1,... N+ p—1, (74)
i=

whereg ,; is thei-th coeficient of the polynomialt(+ 1)”.
Proof  We prove (7.4) by induction onp. It is dear from (7.2b) that (7.4) holds fgr= 1.
Now we will show that if (7.4) holds fop = r, then it holds fop =r +1. From(7.2a),

t =t f, -t
Bi 1ty (1) = Trl Bi-1, 1, () + A Bty (1) - (7.53)

Substituting (7.4) into thisxpression while lettingy' = A/2 andt, = t',, gives s

_t=tgr-y 1 TH -t 1 ¢
Bir+igy (t) = A ol i:zlar,iBZ(k—l)—r+i—1,r,tN’(t)+ R Figlar,iBZk—Hi—l,r,tN’(t)
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roy
+(0rr * 07 re1) tZkr_Z_t Bok-1+ Oy r+1 t_trzk_r_l Bok-1 + Ot r41 tzrkA_t
where we hee dbreviated By, ¢, (t) with B, and we hee wsed the follaving facts:
® sincerc, 1 — oy =0,
or 2ot = t'ox—r-1)) = (rov 1 = 6 A" + 6y o(t = t'p(r-1))
= 0 1(t'ok—r-1 =t +t = U'op1)-1) + or 2t = U'opr-1) — &)
= or 1(t'ok—r-1 = 1) + (o7 1 + o7 )t = t'2(kr)-1) (7.5b)
(i) sinceo; ; — oy 41 = 0,
Or etz =1) = 0 (V2 = 1) = (0rr = 07 s
=0, (U —t—A)+ o pa(t'og —t+t =ty 1)
= (o1 + o)) (t'2k-1 = 1) + Oy paa(t = V'our-1) (7.5¢)
(iii) and sinceyr,j_l(r +2=j)-rorj+jorj+1=0,]=2,... 1, we e that
= 3 0 g o A = o+ 27 ) ~ron + o

10 t=tk-r

= Uok-r-1
R R Ry v Bo(k-1)-r,r 1y () + 0 )
O

2T A Bok—1-r,r 1, (1)

r

O
+ Z fr,jﬂ

j=2

t—1t'5k-—r-1 t'y —t
A + 07 j-1 TN DRy (t)

2k ~ 'y —t 0
+ oy W BZk—l,r,tN’(t) + Or 41 N BZk,r,tN'(t)D
0
10 t=tur Uogr-1— 1 t = t'2k-r)-1
= — ———— = Boge)r t6;1———— Box1 t (o1t o _—
o Ebr,l [\ 2(k-1)-r r,l [ 2k-r-1 ( r,l r,2) rAN

r t' .

2(k=1)-r+j

+ Z Orj-1t Gr,j)
j=2
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ty —t - tok—ra r+2-| j
ZGrJ 1N * Orj+1 rA(' i ~ Or,j1 . T Orj+1

Uok-1)-r+j = U+ T = Uor-1pj

o ro
! Uy —t (r+2-jA t'o(-1)-r+j — t
- O i _ -6y iq—m——* -, — =1
ng r,j-1 rAr r,j-1 rA, r.j rA'
U=t okr-1)+j t—t'ok-r-1 o
i R e L I
2(k-1)r+j ~ 1 t = Ua-r-1)+j
Z(GFJ 1+0r1)— + (01 +Gr,j+l)T , (7.5d)

which all derve fom the &ct thato, =1 and o ;= 4 G = (=D oir2)

j=2,...r+1. Now, rearranging terms slightlye get

1 t—t'ok-r-1 Uok-r-1 — t
Bk,r+1,tN(t) = 5 [Pr1 # Bok-1)-r + 011 ri, Bok-r-1
2 0 ri ri
[ O~ tok-r-1)+] Uok—r+j-1 — t a
+ + 0y i) B e F Boker+io
ng(au Oy J+1) X 2(k=1)-r+] X 2k-r+j-10
U= tok-r-1 -t U
t0rrn ; : Bok-1 + 0 r+1 —— BakO- (7.5e)
ri roy 0

Referring to (7.2a) and noting thato;;=0,411=1, 0641 =06ra1r42=1, and

Orj * 01 j+1 = Oraj+1, ) =1,... 7 +1, we see that
1 r+2
Bir+1ty (1) = o Zl Or+1 Bok—r+i-2r+14y' (1) (7.5f)
1=
which \erifies that (7.4) holds fgy =r + 1. O

Corollary 7.2. Letr 21 and o, be thei-th coeficient of the polynomialt(+ 1)'. Then, for
splines defined on uniform knot sequencesyeryi ull L(r) with coeficients «,

k=1,...N+r—-1,uis also a member df(r) with coeficients g, k = 1,..., 2 +r -1 given,
forr odd, by
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_‘
+
LN

M|

O(k+r)/2-i+1 Or 2i-1  » k odd

[ERN
!
ik

=
=~
"
T
N
OOoooooOogod
E_

(7.6a)

N
M|

A(ksr+1)2-i Or i~ kKeven

i
N

and, forr even, by

r+l1
O

2
Z O(k+r)/2-i+1 Oy 2i-1  » KEeven
J

(7.6b)

O O !

2
21 A(k+r-1)/2-i+1 Or 2, kodd
i=

=
=~
1
OOooooooOooad

where Op Ois the smallest ingger n such thatn = p and Op Ois the lagest intger n such that
n<p.

Proof.  In the following, setBy,,(t) =0if k <1ork>2N +r -1. Fromequation (7.1a) and
Proposition 7.1,

N+r-1 N+r-1 1 r+l
u(t) = kzl oy Bir ity () = Z ko1 . Z 01 i Bak—ri-1r ty ()
2(N+r-1) 1 r+l
= k’§1 O’E or-1 ZGr.Bk ity (1)
k' odd
r+l r+1
2(N+r-1)-1 1 GJ*D b0 .
= 2 aK+1 Z Ot 2j- -1By- —r+2j-1r ty: (t) + Z Or 2j By —r+2j,r,ty' (t)
k 2710 =
1 >
k' odd o D

M| 2
O

ax+1 Or 2j-1Br—r+2j-15 1 (1) K 0dd
2(N+r-1) 1 2

= 2

k=1 27

=

T
O

1
iy

(ZE O 2j Bk’—r+2j—1,r,tN’(t) K" even
2

th
Oooooogogono
T
&
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O r+1
0 5% U an+r-3+2j
O 2 Ok+r O 2j-1Bier (1) K+r even
1 0O =1 k=2jr : )
= o Ut 7.7a
27 50570 N34z
U Z Z Ok+r+l . O 2j Bk’,r,tN’(t) k +r odd
o =t k=2j-r —
0
Thus, ifr is odd, we can write, abhnating By 1, (t) with By,
0 0 O

|

O O O
2N+r-1 o O, 2N+r+1 o O, 2(N+r-1 ol
. Q%K 01 g%k, 013 (NE=Y) ket Or v

O

_ z 2 k+ z >
2 [ k=2-r kaﬂ—l Gr,z% k=4-r kaﬂ_l Gr,4%
0 0= O RS R

u(t) =

et kO,

O

OO

2
k=1 ka Gr’r+l
03

where the top no is for k odd and the bottom wois for k even. If r is even, we can write

EZN+ 1Da lo] . 2N+ +1Da o . 2(N+r) 1ﬁxk (o] B

r- k+r Or,1 r k+r r,3 - K Oryr+l

U= 550 % 5 2 | Bt oo ot Bt 3 02 %km,
[ k=2-r Qlk+r—]_ Or2 k=4-r Qlk+r—1 Ora k=1 0 0
0 0= O 0——-1 "0 0

where, the top m is for k even and the bottom m is for k odd. Naw, by collecting the terms for
ki {1,...,2N +r -1} and forming the gpression

2N+r-1
u(t) = kZl BrBirty (1) (7.7b)
we see that the cdafients gy are as gien by (7.6a,b). O

Lemma 7.3. LetN= {2"}%,. Then, L{) 0L for any Ni, NoON such thatN; < N,.
Furthermore,

(@) Given uD U and N = 2" < o0, there aists j,[IN, j,<oco and u; [0 U(J-rn) such that
Ju—-uj I <N.

(b) Suppose there is a sequedogy } nn Such thauy D ul) anduy - u. Thenud U.
N

Proof. ~The nesting of subspaces defined on uniform knot sequencessfadicectly from
Corollary 7.2. Nesting for subspaces defined on general knot sequencesgsfdttam the knot
subdvision results irr0 . and [69]

(a) This result is obious for the case = 1 (sinceuy[ L(,\P is piecavise constant).So assume
that r 22. Since ul L{,[0,1] O L3'[0,1] we hae, for ary >0, that there xists
u'.[0C™MO0, 1] (space of continuous functionsyD), with u(t)D R™, tII[0, 1]) such that
lu-u,lb <& [71, Theorem 3.14 (p. 69)IChooses = 2/(5+ m)N. We will construct fromu’,
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another functionu, such that|y—u,|pb <& anda+e¢<u,(t)<b-¢ for all tIJ [0, 1]. This
allows us to approximate, with anr-th order spline in suchaay that by allaving enough knots
for this spline (and using theadt that the spline subspaces nest) its fiooefts a) satisfy
o U,

With (] denoting the-th row of a vector define the continuous functian. : [0, 1] — R™
as follovs:

Bbi —e dful)>b -e¢,
u(t)=gul) ifa +esult)sb -¢, iMm, to[o0,1], (7.8a)
Bai +e ful(t)<a +e,
Note that, for alltt [0, 1], @' < u'(t) < b' sinceu(t)lDU. Thus, if U, < a + ¢, then either
(i) a <u'(t) <a +e=ul(t), in which case, & u.(t) — u'(t) < U.(t) - &' = ¢, and therefore
(L) —u' @)’ = 2 < ul —u'(t)? + &2, (7.8b)
or, (i) u'(t) > a' + &, in which case & u'(t) — uL(t) < u'(t) — u'L(t), and therefore
(U, = U' ()% < (UL (1) - u' ()% < (UL (t) - u'(1)> + 2. (7.8c)
A similar amgument holds for the casar’ >bj—&. For the caseb <u'! <ad,
(UL(t) = u' ()% = ((U',)'(t) - U'(1))>. Thus, in all casesu((t) - u.(t))? < (u'(t) - uL(t))® + &2.
Therefore, we hae
lu - u,lE = I > (U'(t) - ut)dt<s [ (W) - uL(t)? + ) dt = Ju-u, g+ me*. (7.8d)
0i=1 0i=1
Thus, [b - u.]pb < (1+m)e. Sinceu(l} is a ®ntinuous function, for eac] m, the modulus of
continuity for u, @(u, o) =max{lu.(ty) - u.(t2)| | It - tol< o}, goes to zero as — 0.
Thus, by[63, Theorem XIl.1 (p. 170)], therexists an intger N; = 2™ <00 and a spline
u, [ Lf\r,i such that

&€

> (7.8e)

lue = uny b = flug = un, llo <

Let D, ., be as gien on page 155 of63] (for allr 22, 1< D, , < 00). Sinceuy, is a spline with
bounded coditients, it is Lipschitz continuoud-Hence, therexasts n,[T1 N, n; < n, < oo, such
that, withN, = 2",

llun, (t2) = un, (t2)] < , Vg, [0, 1] such thatth —to| < (r = 1)/No . (7.8f)

&
Do — 1

Now, for k = 1,... Ny +r, define the interals T, = [ty—, tx-1], with t, = k/N,, and define the
quantities M} = maxp 7, Uy, (), and mj = mingg T, Uy, ().  Since for ty, 00 Ty,
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[ty — to] < (r —1)/N,, we ®e that

. . . . 8 .
My - mj = tl,QD%XTk Ju, (t1) — Uy, (2] < D1 for tg, I Ty, IMmM. (7.8g)

Thus,

& .
Dr’mSW+l, Viddm. (78h)

Next, sinceLy, O Ly, by Corollary 7.2,uy, [0 Ly,. Hence, theresests {ay} 1" O R™

such thaty, (t) = Zl'(\'ﬁf ax¢x(t). Thus,by [63,Corollary XI.2 (p. 156)],

ML+ m M} - m Mg —m
i k Kk k Kk Kk k
|ak - ? | <_ Dryoo - < <_ - -

%£+mLSaLS%£+ML. But,
from (7.8e), we see thatMj =maxmT, Uy, (t) < maxmT U.() +3e=b' -3¢ and

mi, = mingy 7, U, (t) 2 mingp T, Uy () -2 e =a' + 1e. Thus, @ <o <b' which implies that

2
a U. Finally, by (7.8d) and (7.8e),

where we used (7.8h) for the second inequalitiierefore,—

£ 1 .
lu-unlbslu-uelb+ v, = uUlb + lu; —un, b < e+ (1 + m)e + 5N (7.8))

sincee = 2/(5+ m)N. Thus, the proposition holds witly = 2" andu; [ U(jrn).
(b) Referring td63, Corollary XI1.1 (p. 1